Title: Empirical model for morphological evolution of crystallisation process using artificial neural networks

Authors: Jalal M. Nawash; Mohammad A. Al-Khedher

Addresses: Physics Department, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA. ' Mechatronics Engineering Department, Al-Balqa Applied University, Amman 11134, Jordan

Abstract: Understanding and modelling crystals evolution is a major concern in crystallography science and engineering fields. A new approach for modelling nucleation patterns of ZnO-TeO2 crystallisation process is introduced. This approach utilises artificial neural network (ANN) models to estimate time-dependent nucleation and to predict the crystallisation directions that are based on prior formations, which were extracted from processed images of the crystal. Quantitatively, crystals evolution is predicted by a systematic combination of image analysis associated with ANN modelling systems. Different crystallisation stages were characterised by image analysis to distinguish each stage, and to extract created crystal information. It was found that the model is able to successfully predict the crystal evolution with respect to used nucleation seeds.

Keywords: artificial neural networks; ANNs; ZnO-TeO2 crystal growth; image analysis; feature extraction; radon transform; zinc oxide; tellurium dioxide; crystallisation process; morphology; modelling; nucleation patterns.

DOI: 10.1504/IJCMSSE.2011.045586

International Journal of Computational Materials Science and Surface Engineering, 2011 Vol.4 No.4, pp.374 - 388

Received: 24 Mar 2011
Accepted: 05 Sep 2011

Published online: 11 Jan 2015 *

Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article