Title: Content-based X-ray image analysis of aluminium castings

Authors: Petr Praus

Addresses: Department of Analytical Chemistry and Material Testing, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic

Abstract: The X-ray digital images of aluminium castings containing different microstructure defects were characterised by feature vectors composed from: 1) first-order statistics; 2) singular values; 3) second-order statistics calculated from grey level co-occurrence matrices (GLCM). The most suitable features were found by means of the Ward|s clustering method. The X-ray images characterised by the first-order statistics, such as 1st to 6th statistical moments and entropy, were portioned in two main clusters with efficiency of 90%. Consequently, using the six statistical moments and entropy, aluminium castings were sorted according to their quality in comparison with one casting of no observable defects. Their similarity was expressed measured by the Euclidean distance (ED). At ED = 5, the quality aluminium castings were effectively separated from the defective ones. This image analysis approach can be simply implemented into the automatic quality control of metallurgical processes and could be also used for the retrieval of similar microstructure defects in image databases.

Keywords: aluminium castings; microstructure defects; X-ray image analysis; cluster analysis.

DOI: 10.1504/IJCMSSE.2011.042820

International Journal of Computational Materials Science and Surface Engineering, 2011 Vol.4 No.3, pp.219 - 231

Received: 03 Jun 2010
Accepted: 21 Mar 2011

Published online: 11 Jan 2015 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article