Title: Increasing energy efficiency in sensor networks: blue noise sampling and non-convex matrix completion

Authors: Angshul Majumdar, Rabab K. Ward

Addresses: Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada. ' Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada

Abstract: The energy cost of a sensor network is dominated by the data acquisition and communication cost of individual sensors. At each sampling instant it is unnecessary to sample and communicate the data at all sensors since the data is highly redundant. We find that, if only (random) subset of the sensors acquires and transmits the sample values, it is possible to estimate the sample values at all the sensors under certain realistic assumptions. Since only a subset of all the sensors is active at each sampling instant, the energy cost of the network is reduced over time. When the sensor nodes are assumed to lie on a regular rectangular grid, the problem can be recast as a low-rank matrix completion problem. Current theoretical work on matrix completion relies on purely random sampling strategies and convex estimation algorithms. In this work, we will empirically show that better reconstruction results are obtained when more sophisticated sampling schemes are used followed by non-convex matrix completion algorithms. We find that the proposed approach gives surprisingly good results.

Keywords: distributed sensor networks; energy efficiency; low rank matrix completion; blue noise sampling; non-convex optimisation; wireless sensor networks; WSNs; wireless networks; energy consumption.

DOI: 10.1504/IJSNET.2011.040237

International Journal of Sensor Networks, 2011 Vol.9 No.3/4, pp.158 - 169

Available online: 22 May 2011 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article