Title: 2DPCA-based techniques in DCT domain for face recognition

Authors: Messaoud Bengherabi, Lamia Mezai, Farid Harizi, Abderrazak Guessoum, Mohamed Cheriet

Addresses: Division Architecture des Systemes et Multimedia, Centre de Developpement des Technologies Avancees, Cite 20 Aout 56, Baba Hassen BP 11, Algiers, Algeria. ' Division Architecture des Systemes et Multimedia, Centre de Developpement des Technologies Avancees, Cite 20 Aout 56, Baba Hassen BP 11, Algiers, Algeria. ' Division Architecture des Systemes et Multimedia, Centre de Developpement des Technologies Avancees, Cite 20 Aout 56, Baba Hassen BP 11, Algiers, Algeria. ' Laboratoire Traitement de signal et d'imagerie, Universite Saad Dahleb de Blida, Route De Soumaa, Blida BP 270, Algeria. ' Laboratoire d'Imagerie, de Vision et d'Intelligence Artificielle, Ecole des Technologies Superieur, 1100, Rue Notre-Dame Ouest, Montreal, Quebec H3C 1K3, Canada

Abstract: In this paper, we introduce two-dimensional PCA (2DPCA), diagonal principal component analysis (DiaPCA) and DiaPCA+2DPCA in DCT domain for the aim of face recognition. The 2D discrete cosine transform (2D DCT) transform has been used as a pre-processing step, then 2DPCA, DiaPCA and DiaPCA+2DPCA are applied on the upper left corner block of the global 2D DCT transform matrix of the original images. The Olivetti Research Laboratory (ORL) and YALE face databases are used to compare the proposed approach with the conventional one without DCT under four matrix similarity measures: Frobenuis, Yang, assembled matrix distance (AMD) and volume measure (VM). The experiments show that in addition to the significant gain in both the training and testing times, the recognition rate using 2DPCA, DiaPCA and DiaPCA+2DPCA in DCT domain is generally better or at least competitive with the recognition rates obtained by applying these three 2D appearance-based statistical techniques directly on the raw pixel images; especially, under the VM similarity measure.

Keywords: 2DPCA; two-dimensional PCA; DiaPCA; diagonal PCA; DiaPCA+2DPCA; 2D DCT; discrete cosine transform; face recognition; principal component analysis.

DOI: 10.1504/IJISTA.2009.027108

International Journal of Intelligent Systems Technologies and Applications, 2009 Vol.7 No.3, pp.243 - 265

Available online: 15 Jul 2009 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article