Title: A modified tabu search strategy for multiple-response grinding process optimisation
Authors: Indrajit Mukherjee, Pradip Kumar Ray
Addresses: School of Management Sciences, Bengal Engineering and Science University, Shibpur, Howrah 711103, India. ' Department of Industrial Engineering and Management, Indian Institute of Technology, Kharagpur 721 302, India
Abstract: Multiple-response grinding process is usually too complex to optimise, requiring a large number of interacting process variables and responses. Experimentation techniques, such as factorial design, fractional factorial design and Response Surface Methodology (RSM) that may be used for this process are too difficult to implement for production lines involving grinding and other necessary operations. For grinding process involving continuous variable, non-linear and multiple-response optimisation problem, the potential of Tabu Search (TS) strategy needs to be explored either in its original form or its variant. In this paper, integrating Artificial Neural Network (ANN) and composite desirability function with a Modified Tabu Search (MTS) strategy, based on Mahalanobis multivariate distance approach to identify tabu move, with scatter search intensification scheme is proposed for the above-mentioned problem. Computational results show that MTS provides better consistency in terms of sample mean and standard deviation of composite desirability measures than that of real-coded GA.
Keywords: artificial neural networks; ANN; back propagation algorithms; desirability function; genetic algorithms; GA; Mahalanobis distance; multiple-response grinding; tabu search; TS; optimisation.
DOI: 10.1504/IJISTA.2008.016361
International Journal of Intelligent Systems Technologies and Applications, 2008 Vol.4 No.1/2, pp.97 - 122
Published online: 22 Dec 2007 *
Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article