Title: A model-based investigation of tool-chip friction during precision micro cutting of commercially pure titanium alloy

Authors: Alp Aksin; Yiğit Karpat

Addresses: Department of Mechanical Engineering, Bilkent University, Ankara, 06800, Turkey ' Department of Industrial Engineering, Bilkent University, Ankara, 06800, Turkey; Department of Mechanical Engineering, Bilkent University, Ankara, 06800, Turkey; UNAM – Institute of Materials Science and Nanotechnology, Ankara, 06800, Turkey

Abstract: Understanding interaction between the cutting tool edge radius and the work material is essential to identify the conditions leading to superior surface finish during the micromachining process. The interaction between friction angle and effective rake angle has been investigated based on a slip-line field-based machining model from the literature. Machining forces and cut chip thickness values were obtained from orthogonal cutting tests and employed in the process model. The proposed model also allows for calculating material properties such as shear flow stress and fracture toughness. The proposed model can successfully simulate machining forces during shearing-dominated machining conditions. The results showed the importance of flank and rake face friction in micro-scale machining.

Keywords: micro cutting; edge radius; friction; ductile fracture; machining; slip line field.

DOI: 10.1504/IJMMS.2022.10046949

International Journal of Mechatronics and Manufacturing Systems, 2022 Vol.15 No.1, pp.57 - 69

Received: 28 Sep 2021
Accepted: 16 Oct 2021

Published online: 16 May 2022 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article