Title: An integrated approach for multimodal biometric recognition system using Pearson type-II (beta) distribution

Authors: B.N. Jagadesh; A.V.S.N. Murty

Addresses: Department of Computer Science and Engineering, Srinivasa Institute of Engineering and Technology, Cheyyeru (V), Amalapuram, Andhra Pradesh, India ' Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India

Abstract: Biometric recognition plays an important role in personnel identity authentication. Usually, biometric recognition protocols which involve single source of information are called unimodal systems. Such systems suffer from the problems like noisy sensor data, performance, collectability and non-universality. To have an accurate recognition, it is needed to develop a system with multimodal biometrics. Hence, in this paper, a new approach is proposed with the combination of multiple biometric traits such as face, fingerprint and palm vein. Region of interest (ROI) is used to consider the valuable information from the images. The 2D discrete cosine transform is used for extracting the feature vector from face, fingerprint and palm vein and fusion at feature extraction level. Here, the feature vector is modelled with Pearson type-II distribution and the model parameters are estimated using the EM algorithm. The initialisation of model parameters is done through moment method of estimators and K-means algorithm. The performance of the proposed algorithm is carried by experimentation with CASIA biometric database. Through experimentation, the proposed model performs more effectively than the algorithm with Gaussian mixture model.

Keywords: multimodal biometric recognition; discrete cosine transform; EM algorithm; region of interest; Pearson mixture model; PMM.

DOI: 10.1504/IJCISTUDIES.2020.111043

International Journal of Computational Intelligence Studies, 2020 Vol.9 No.4, pp.307 - 319

Received: 08 Aug 2018
Accepted: 21 Feb 2019

Published online: 16 Oct 2020 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article