Title: Application of artificial intelligence to wind power generation: modelling, control and fault detection

Authors: Hadjira Bouazza; Mohamed Lokmane Bendaas; Tayeb Allaoui; Mouloud Denai

Addresses: LEB-Research Laboratory, Department of Electrical Engineering, University of Batna 2, Algeria ' LEB-Research Laboratory, Department of Electrical Engineering, University of Batna 2, Algeria ' Laboratory of Energetic Engineering and Computer Engineering Tiaret, Algeria ' University of Hertfordshire, Hatfield, Hertfordshire, UK

Abstract: Power converters play a key-role in the grid-integration of wind power generation and as any physical device, they are prone to mal function and failure. There is, therefore, a need for converter health monitoring and fault detection to ensure a reliable and sustainable operation of the wind turbine. This paper presents different artificial intelligence-based fault detection using fuzzy and neuro-fuzzy techniques. The proposed methods are designed for the detection of one or two open-circuit fault in the power switches of the rotor side converter (RSC) of a doubly-fed induction generator (DFIG) wind energy conversion system (WECS). In the proposed detection method only the average values of the three-phase rotor current are used to identify the faulty switch. Alongside these condition monitoring strategies, the paper also present two fuzzy logic-based controllers for the regulation of the real and reactive power flow between the grid and the converter. The performances of the controllers are evaluated under different operating conditions of the power system and the reliability, feasibility and the effectiveness of the proposed fault detection have been verified under various open-switch fault conditions.

Keywords: wind energy; doubly-fed induction generation; DFIG; maximum power point tracking; MPPT; fault detection; open-switch fault; type-2 fuzzy logic; adaptive neuro-fuzzy inference system; ANFIS.

DOI: 10.1504/IJISTA.2020.108083

International Journal of Intelligent Systems Technologies and Applications, 2020 Vol.19 No.3, pp.280 - 305

Received: 26 Jun 2018
Accepted: 25 Jun 2019

Published online: 02 Jul 2020 *

Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article