Robustness analysis of feedback linearisation and LQR control on quarter-car model with cubic nonlinearity
by Tamir Shaqarin
International Journal of Vehicle Noise and Vibration (IJVNV), Vol. 14, No. 3, 2018

Abstract: The nonlinear behaviour of suspension elements is crucial when vehicles encounter large road inputs. These nonlinearities lead to performance degradation of active suspension systems. Feedback linearisation (FBL) is an efficient technique for nonlinear systems, whereas it may have a drawback when the nonlinearities are not well estimated and/or their parameters are varying or uncertain. Hence, the robustness of FBL for active suspension systems is investigated. In this work, the quarter-car model has a suspension spring with a cubic nonlinearity. The presented design is based on the combination of FBL and LQR controller. The LQR controller is preferred owing its ability to define an objective function that takes into consideration the active suspension performance specifications. To assess the performance and robustness of the proposed controller, simulations are carried out on two types of road profiles. They demonstrate the robustness of the FBL with LQR controller against uncertain nonlinear suspension stiffness.

Online publication date: Thu, 03-Jan-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Noise and Vibration (IJVNV):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com