Study of available exhaust gas heat recovery technologies for HD diesel engine applications
by D.T. Hountalas, C.O. Katsanos, D.A. Kouremenos, E.D. Rogdakis
International Journal of Alternative Propulsion (IJAP), Vol. 1, No. 2/3, 2007

Abstract: Diesel engines reject a considerable amount of energy to the ambience through the exhaust gas. Significant reduction of engine brake-specific fuel consumption (bsfc) could be attained by recovering a significant part of exhaust gas heat. Various techniques have been proposed in the past to recover exhaust energy: mechanical, electrical turbocompounding and Rankine Bottoming Cycles. In the present it is examined the potential bsfc improvement of heavy-duty (HD) diesel engines using the aforementioned technologies. The analysis is performed on a HD Diesel engine. An engine simulation model is used to estimate exhaust gas characteristics and examine mechanical and electrical turbocompounding. For mechanical turbocompounding it is investigated the effect of power turbine pressure ratio and efficiency while for electric the effect of T/C efficiency and exhaust pressure increase. Finally, a parametric study has been conducted using a 'Rankine bottoming cycle'. The analysis includes the effect of evaporator pressure and expander efficiency.

Online publication date: Tue, 03-Apr-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Alternative Propulsion (IJAP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com