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Abstract: In this paper, we investigate a new approach to multi-criteria 
decision making (MCDM) centred upon the application of canonical 
correlation analysis (CCA) to distinct groups of judgement criteria. By 
resorting to MV-MCDM (multi-view multi-criteria decision making), one can 
estimate reliable values for criteria weights via CCA for multi-view  
multi-criteria problems; reduce the dimensionality of the decision matrix by 
considering only one of the available views; and easily extend well-known 
MCDM methods, such as simple additive weighting (SAW) and technique for 
order of preferences by similarity to ideal solution (TOPSIS). MV-MCDM also 
allows the adoption of different aggregation methods (such as the Choquet 
integral and a new heuristic based on radar charts) to generate the overall 
scores of the alternatives. A numerical example with the multi-view versions of 
SAW and TOPSIS demonstrates the applicability of the novel approach. 
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1 Introduction 

Multi-view learning (MVL) is a field of machine learning that integrates data from 
multiple feature sets (a.k.a. views) (Zhao et al., 2017; Sun et al., 2019). Its methods have 
shown great appeal recently because data are often collected from different sources (or 
show multiple facets) and because single-view data cannot comprehensively describe the 
relevant contents of all learning examples. For instance, web pages can be described by 
both the page contents (one view) and the hyperlink information (another view), whereas 
each image in a web page can be characterised by its shape, colour, and some metadata 
(Zhao et al., 2017; Ye et al., 2018). 

The different views often contain complementary information, and MVL methods can 
take advantage of this information to learn representations that are useful for 
understanding the structure of the data. Due to its strong theoretical underpinnings, MVL 
has been adopted with great success to improve the generalisation performance of 
different learning systems. Applications of MVL abound in the literature, covering a wide 
range of machine learning branches, such as dimensionality reduction, active learning, 
ensemble learning, clustering, deep learning, and evidence aggregation (Zhao et al., 2017; 
Sun et al., 2019; Ye et al., 2018; Mukherjee et al., 2019). 

On the other hand, the area of multi-criteria decision making (MCDM) deals with 
decisions involving the choice of a best alternative (i.e., course of action, strategy, 
solution) from several potential candidates, taking into account various judgment criteria 
(Triantaphyllou, 2000; Kou et al., 2011; Cuong et al., 2016; Papathanasiou and Ploskas, 
2018; Kumar and Kumar, 2018; Loganathan et al., 2020). Typically, the outcome of an 
MCDM method is a ranking of the alternatives, which allows the decision maker (DM) to 
compare their relative performance according to his/her preferences with respect to the 
conflicting criteria. 

In MCDM, numerical weights are usually assigned to the decision criteria to quantify 
their relative importance. The combined effect of the weighted criteria measures the 
overall performance of the alternatives. In this regard, the available MCDM techniques 
can be categorised into two groups, namely compensatory and non-compensatory 
(Banihabib et al., 2017). While in the former poor performance in some criteria can be 
compensated for by high performance in other criteria, in the latter each individual 
criterion can independently play a critical role in the aggregated performance of an 
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alternative. Among the several compensatory methods available, simple additive 
weighting (SAW) (MacCrimmon, 1968) and the technique for order of preferences by 
similarity to ideal solution (TOPSIS) (Hwang and Yoon, 1981) are two of the most  
well-known. 

Drawing a parallel between MVL and MCDM, it is noticeable that methods 
pertaining to both areas operate on a series of values arranged in the form of a  
two-dimensional (data/decision) matrix. While in MVL there is a set of patterns  
(rows) represented by a set of features (columns), in MCDM one has a set of 
alternatives/decision options (rows), each assessed according to a set of criteria 
(columns). By establishing this correspondence, one can realise that in MCDM no 
distinction is usually made among the elements of the criteria set with respect to the 
different scenarios/contexts they may be associated with. 

Such an issue is evident in the medical field, for example. Disorders, such as acute 
coronary syndrome, vector-borne diseases, and chronic liver diseases, have been the 
target of MCDM approaches for the purposes of diagnosis or assessment of 
mortality/severity levels (Sałabun and Piegat, 2017; Pal et al., 2019; Piegat and Sałabun, 
2015). Although relevant, such investigations have focused solely on the unimodal 
analysis of the clinical conditions of the patients, even though the data related to such 
criteria may be collected from diverse information sources, such as medical records, 
pathological exams, blood tests, ultrasounds, etc. The same observation could be made to 
studies conducted in a very different application domain, namely the analysis of 
renewable energy (RE) sources via MCDM methods. In Lee and Chang (2018), for 
instance, the evaluation criteria assessing the RE sources were divided into four main 
categories, viz. financial, technical, environmental, and social, but all of them were 
grouped into a common set while performing the decision analysis. 

So, even in those cases where the criteria are explicitly modelled as belonging to 
different groups (Baudry et al., 2018; Munda, 2004; Cambrainha and Fontana, 2018) or a 
large number of them is somehow reduced by considering the similarities of their score 
values (Liu et al., 2017), the application of standard MCDM methods takes into 
consideration neither the peculiarities of each group nor the correlations among the 
groups while generating the final ranking of alternatives. Besides, it is worth emphasising 
that criteria belonging to different groups are often dependent to each other, even though 
their interdependence may be of different levels and due to different reasons. This way, 
the individual weights associated with different criteria are usually difficult to be properly 
set (Tervonen et al., 2009). Although these issues are very relevant, as far as we are 
aware of there is no work published in the MCDM literature that is dedicated to 
investigating effective approaches to deal directly with them. To help filling this gap, we 
propose in this paper a new approach, referred to as multi-view multi-criteria  
decision making (MV-MCDM). 

MV-MCDM is centred upon the application of canonical correlation analysis (CCA) 
(Hotelling, 1936) to the distinct groups of criteria (referred to as ‘criteria views’). CCA is 
a widely used statistical method to measure the linear relationships between two 
multidimensional variables (Meloun and Militký, 2011; Manly and Navarro Alberto, 
2017). It has gotten popularity in machine learning (Hardoon et al., 2004), particularly in 
MVL, where it is employed to obtain a low-dimensional and closely correlated 
representation of the original multi-view data (Sun et al., 2019).1 

By resorting to MV-MCDM, we expect that the DM can deal more naturally with 
multi-criteria problems having distinct groups of criteria. Moreover, the novel approach 
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enables the estimation of reliable values for criteria weights via CCA. Another interesting 
advantage is that MV-MCDM entails the reduction of the dimensionality of the decision 
matrix by considering only a single criteria view for performing the assessment of the 
alternatives. In addition, we show here that the MV-MCDM methodology allows the easy 
multi-view extension of well-known MCDM methods, such as SAW and TOPSIS. Our 
approach is also generic enough to allow the use of different aggregation methods 
(Marichal, 1999; Grabisch et al., 2009) to yield the overall scores of the alternatives 
based on distinct criteria weights generated by CCA. 

In this regard, we show that the canonical variate correlation coefficients can be used 
as fuzzy density measurements, thus allowing the application of the Choquet integral 
(Choquet, 1954). In short, the Choquet integral is an aggregation operator with respect to 
any fuzzy measure (Grabisch, 1995). Its wide usage is mainly due to the fact that it 
considers not only the importance of each individual attribute to be aggregated, but also 
the interactions between them (Cao, 2012). Once a fuzzy measure is identified, a fuzzy 
integral can be used as an aggregation tool for computing the global scores or ranking the 
alternatives. 

However, the identification of a fuzzy measure is one of the most difficult steps for 
applying fuzzy integrals in order to solve MCDM problems. Over the years, several 
studies have emerged aiming at determining the values of fuzzy densities (Leszczyński  
et al., 1985; Takahagi, 2007; Larbani et al., 2011). Nonetheless, these methods usually 
require subjective information to be provided by a specialist. To exclude this subjectivity, 
other methods (using neural networks and genetic algorithms, for example) have been 
proposed (Lee and Teng, 2000; Liao et al., 2013). Yet, these methods are supervised in 
nature, requiring prior knowledge of the results and also showing slow convergence 
problems. Besides the application of the Choquet integral, a new heuristic aggregation 
method based on radar charts (Wilkinson, 2005) is also considered in this paper. 

In short, the main contributions of MV-MCDM are: 

1 the estimation of reliable values for criteria weights via CCA 

2 the reduction of the dimensionality of the decision matrix by considering only one of 
the available views 

3 the easy multi-view extension of well-known MCDM methods, such as SAW and 
TOPSIS. 

With respect to the third contribution in particular, MV-MCDM is generic enough to 
allow the adoption of different aggregation methods to generate the overall scores of the 
alternatives. In this regard, two other contributions of this work involve the use of 
canonical variate correlation coefficients as fuzzy density measurements for the Choquet 
integral and the proposition of a novel aggregation method based on radar charts. 

The remainder of this paper is structured as follows. In Section 2, we present an 
overview of the main aspects related to standard MCDM, CCA, and aggregation 
methods, which compose the main conceptual ingredients of MV-MCDM. In Section 3, 
we present details about the main steps comprising the new multi-view decision making 
methodology and also point out some of its relevant properties. In Section 4, a numerical 
example is given to demonstrate the usefulness of the proposed approach, showing in 
particular how MVMCDM can be instantiated for SAW and TOPSIS. Section 5 
concludes the paper with some remarks on future work. The detailed formulation of the 
new aggregation method based on radar charts is provided in Appendix. 
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2 Background 

In what follows, we briefly review the basic aspects related to MCDM, with a focus on 
SAW and TOPSIS. Then, we present the theory behind CCA that is particularly useful 
for the design of MV-MCDM. Finally, we comment on the role of aggregation methods 
in the context of MCDM, providing specific details on the formulation of the Choquet 
integral. 

2.1 MCDM 

As already mentioned, MCDM refers to the process of making decisions when there are 
multiple but a finite list of alternative solutions to the decision problem in hand and 
multiple criteria to assess the pros and cons of such alternatives (Triantaphyllou, 2000; 
Papathanasiou and Ploskas, 2018). An MCDM problem with m alternatives and n criteria 
can be formulated in the form of a decision matrix: 

( )

1 2

1 11 12 1

2 21 22 2

1 2

                                     

. . . .

. . . .

. . . .

n

n

n

ij m n

m m m mn

c c c
A x x x
A x x x

x

A x x x

×

 
 
 
 

= =  
 
 
  
 









 (1) 

( )1 2w , , , nw w w=   

where A1, A2, …, Am denote the feasible alternatives, c1, c2, …, cn refer to the (usually 
conflicting) evaluation criteria, xij is the evaluation of alternative Ai under criterion cj, and 
wj stands for the weight of criterion cj. 

The aim is usually to find the best option, taking into account the information 
available in the decision matrix   and the weight vector w. Instead of a single solution, 
a ranking of alternatives may be also output by an MCDM method, allowing one to better 
compare their relative performance. In classical MCDM (Hwang and Yoon, 1981; Dyer 
et al., 1992), the ratings and criteria weights should be known precisely. More recently, 
MCDM approaches aiming at the modelling and handling of uncertain values and 
weights have been investigated, mostly in the context of fuzzy logic (Mardani et al., 
2015). In the sequel, we summarise two of the most well-known MCDM methods, which 
have been particularly considered in our proposal of MV-MCDM. 

SAW is probably the simplest and most well-known compensatory MCDM method 
(MacCrimmon, 1968). Suppose the DM has assigned importance weights w to the 
criteria. Then, according to SAW, the most preferred alternative, A*, is selected such that 
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where xij is the evaluation of the ith alternative with respect to the jth criterion in  
accord with a numerically comparable scale. Usually, the weights are normalised so that 

1
1.

n
jj

w
=

=  

Hwang and Yoon (1981) developed TOPSIS based on the notion that the chosen 
alternative should have the closest distance to a positive ideal solution (PIS) and the 
farthest distance to a negative ideal solution (NIS). An assumption of TOPSIS is that the 
criteria are monotonically increasing or decreasing (Banihabib et al., 2017). The main 
steps of TOPSIS can be briefly described as follows (Papathanasiou and Ploskas, 2018). 

The first step is to compute normalised ratings from the original evaluations. For this 
purpose, vector normalisation is usually employed: 

2
1

, 1, , ; 1, , .ij
ij

m
iji

x
r i m j n

x
=

= = =


   (3) 

Alternatively, one can make use of linear normalisation, which should be computed 
differently for benefit criteria (for which the higher the evaluation, the better is the 
performance of an alternative) and cost criteria (for which the smaller the evaluation, the 
better is the performance of a given alternative). For benefit criteria, ( )ij ij jr x x−= −  
/( ),jjx x+ −−  where max { }i ijjx x+ =  and min { }.j i ijx x− =  Conversely, for cost criteria, 

( ) / ( ).ij j ij j jr x x x x− − += − −  The values of jx+  and jx−  can be also manually set in order to 
represent the aspired and worst assessment level, respectively. 

The second step is simply to compute the weighted normalised ratings via the linear 
combination 

, 1, , ; 1, , ,ij j ijv w r i m j n= = =   (4) 

where we also assume that 
1
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n

jj
w

=
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Next, the PIS and the NIS are derived as: 
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where J1 and J2 are the sets of benefit and cost criteria, respectively. 
Considering all criteria, one can then compute the Euclidean distances of each 

alternative to PIS ( )iD+  and NIS ( ),iD−  which are given as follows: 
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i ij j
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=
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Finally, the relative closeness to the ideal solution (Cli) should be computed for each 
alternative based on equations (7) and (8). This measure is always between 0 and 1, and 
then the alternatives can be ranked from best (higher values) to worst. 

, 1, , .i
i

i i

DCl i m
D D

−

− +
= =

+
  (9) 

2.2 Canonical correlation analysis 

CCA is a multivariate statistical technique that models the linear relationships between 
two (or more) sets of variables, usually called dependent and independent sets (Meloun 
and Militký, 2011). In particular, CCA has been applied with great success to a variety of 
learning problems related to multi-view data (Zhao et al., 2017; Sun et al., 2019). Like 
principal component analysis (PCA) and linear discriminant analysis (LDA) (Meloun and 
Militký, 2011; Manly and Navarro Alberto, 2017), CCA can also reduce the 
dimensionality of the original variables, since only a few factor pairs are normally needed 
to represent the relevant information. Another attractive property of CCA is its invariance 
to affine transformations of the input variables (Donner et al., 2006). 

Suppose we have a dataset with two distinct views on the features (columns) 
describing the data patterns (rows): 1 2[x , x , , x ]xm n T

mX ×∈ = R  and ym nY ×∈R  

1 2[y , y , , y ] ,T
m=   with nx, ny ≥ 2. In a nutshell, CCA computes a series of paired 

projection vectors (linear transformations), wx and wy, so that the resulting pairs of 
variables, U wT

x X=  and V wT
yY=  (known as canonical variates), are maximally 

correlated. More precisely, r = min(nx, ny) pairs of projection vectors are created so that 
the correlation between U1 and V1 is maximum, the correlation between U2 and V2 is 
maximum, subject to the condition that U2 and V2 are uncorrelated with U1 and V1, 
respectively, and so on and so forth, up to the point that the correlation between Ur and 
Vr is maximum, provided that they correlate with neither U1, U2, …, Ur–1 nor V1, V2, …, 
Vr–1, respectively. 

Each canonical variate can be seen as a latent factor, while the canonical correlations 
1 1U ,Vρ  through U ,Vr rρ  capture the linear relationships between the corresponding latent 

variables, so that 

1 1 2 2U ,V U ,V U ,V .r rρ ρ ρ> > >  (10) 

These correlations can be calculated as follows (for a given pair of projection vectors): 

( )
( ) ( ) ( )( )

U,V
cov w , w w w

,
var w var w w w w w

T T Tx y x xy y

T T T T
x y x xx x y yy y

X Y C
ρ

X Y C C
= =  (11) 

where the covariance matrix Cxy is defined as 
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C
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with mx and my denoting the means from the two views, respectively, 

1 1

1 1m x , m y ,
m m

x j y j
j jm m= =

= =   (13) 

and Cxx and Cyy can be defined analogously. 
Since ρU,V is invariant to the scaling of wx and wy, CCA’s optimisation problem can 

be formulated equivalently as 

w ,w
max w w

. .       w w 1, w w 1.
x y

T
x xy y

T T
x xx x y yy y

C

s t C C= =
 (14) 

This reduces to the problem of solving the following canonical equations: 

( )1 1 w 0xx xy yy yx xC C C C λI− − − =  (15) 

and 

( )1 1 w 0,yy yx xx xy yC C C C λI− − − =  (16) 

where I is the identity matrix and λ is the largest eigenvalue for the characteristic 
equations 

1 1 0xx xy yy yxC C C C λI− − − =  (17) 

and 
1 1 0.yy yx xx xyC C C C λI− − − =  (18) 

It turns out that the largest eigenvalue of the matrix products 
1 1

xx xy yy yxC C C C− −  (19) 

or 
1 1

yy yx xx xyC C C C− −  (20) 

is in fact the squared canonical correlation coefficient, also known as a canonical root. 
Furthermore, it can be shown that 

1 w
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Therefore, the eigenvectors associated with each canonical root are the vectors of 
coefficients wx and wy, which are usually referred to as canonical weights. 

From the formulation above, one can notice that there are many ways to combine the 
original variables via pairs of canonical variates. However, as mentioned, usually only 
the first two or three linear combinations (pairs of canonical variates) are reliable and, 
thus, need to be interpreted. 

CCA can address a wide range of objectives, which can be any or all of the following 
(Meloun and Militký, 2011; Dillon and Goldstein, 1984): 

1 Determining whether two sets of variables are independent or determining the 
magnitude of the relationships that may exist between the two sets. 

2 Deriving a set of weights for each set of dependent and independent variables, so that 
the linear combinations of each set are maximally correlated. 

3 Explaining the nature of whatever relationships exist between the two sets of 
variables, generally by measuring the relative contribution of each original variable 
to the canonical variates that are extracted. 

As a result, some methods to achieve these objectives have been proposed: 

1 Via canonical weights: This procedure examines the sign and the magnitude of the 
canonical weight assigned to each original variable in a given canonical variate. 
Variables with relatively higher (lower) weights contribute more (less) to the variates 
(Lambert and Durand, 1975). 

2 Via canonical loadings: This procedure measures the simple linear correlation 
between an original variable, either in the dependent or independent set, and the 
corresponding set’s canonical variate. 

3 Via canonical cross-loadings: This procedure, which has been suggested as an 
alternative to former (Dillon and Goldstein, 1984), involves correlating each of the 
original variables directly with the canonical variate associated with the other set. 

In our proposed approach (Section 3), we have made use of the first procedure above for 
estimating the weights of the different sets of criteria that may be available to the DM. 

2.3 Aggregation methods 

Aggregation is an important component in building any evaluation or estimation model 
that is based upon various pieces of data or information coming from different sources or 
modalities (Grabisch et al., 2009). In the MCDM context, aggregation usually refers to 
the process of combining several evaluations related to the judgment criteria, or several 
decision scores, in order to produce a global quality score for each alternative (Marichal, 
1999). 

A profusion of aggregation operators have been proposed in the literature, making the 
problem of choosing the right method for a given application a difficult one (Grabisch  
et al., 2009). Among the most well-known, we can cite the various types of average, such 
as the arithmetic, geometric, harmonic, and Bonferroni (1950) average, as well as the 
power average (Yager, 2001), ordered weighted averaging (OWA) (Yager, 1988), and its 
several variants (Chiclana et al., 2002). 
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In MV-MCDM, aggregation is paramount for combining several decision scores 
associated to one of the views in order to generate the final ranking of the alternatives 
(see next section). For this purpose, so far, we have experimented with two distinct 
aggregation operators, a novel one based on radar charts (presented in Appendix) and the 
well-known Choquet (1954) integral. The latter is a fancy aggregation function defined 
with respect to a particular fuzzy measure (Murofushi and Sugeno, 1991) and can be 
considered as extending the weighted arithmetic average or OWA operator by taking into 
account the interdependence or correlation among the different criteria, offering a great 
flexibility for aggregation. 

Let g be a particular fuzzy measure on X. The Choquet integral of a function f : X  
→ [0, ∞] with respect to g is given by 

( ) ( )( ) ( )( ) ( 1) ( )
1

n

i i i
i

fdg f x f x g A−
=

= −  (23) 

or, equivalently, by 

( ) ( ) ( )( ) ( 1) ( )
1

,
n

i i i
i

fdg g A g A f x+
=

=  −    (24) 

where x(.) indicates a permutation on the elements of X, such that f(x(1)) ≤ … ≤ f(x(n)), 
f(x(0)) = 0, A(i) = {x(i), …, x(n)} and ( 1) 0.nA + = /  

The great difficulty to use the Choquet integral is precisely to determine what is the 
fuzzy measure. Because of this, in order to simplify the fuzzy measurement theory, 
Sugeno proposed the λ-fuzzy measurement (Sugeno, 1974; Murofushi and Sugeno, 
1991). 

Let X = {x1, x2, …, xn} be a finite set and let λ ∈ (–1, +∞). Sugeno’s λ-measure is a 
function g : 2X → [0, 1] such that 

1 g(X) = 1. 

2 if A, B ⊆ X, A, B, ∈ 2X with 0A B∩ = /  then g(A ∪ B) = g(A) + g(B) + λg(A)g(B). 

As a convention, the value of g at a singleton set {xi} is called a density and is denoted by 
gi = g({xi}). In addition, we have that λ should satisfy the following equation: 

( )
1

1 1 .
n

i
i

λ λg
=

+ = +∏  (25) 

Tahani and Keller (1990) showed that once the densities are given, it is possible to use 
equation (25) to obtain the values of λ uniquely. 

The densities gi can be interpreted as the importance of a certain element within a set. 
Several approaches have been developed to determine such fuzzy densities, such as via 
neural networks (Zhenyuan and Jia, 1997) or genetic algorithms (Chen and Wang, 2001). 
As shown in the next section, this work proposes a different approach, using canonical 
correlation provided by CCA, to determine the fuzzy densities, which allows the use of 
the Choquet integral in the context of MVMCDM. 
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3 A multi-view approach to MCDM 

As mentioned, in several decision-making settings (Sałabun and Piegat, 2017; Pal et al., 
2019; Piegat and Sałabun, 2015; Lee and Chang, 2018; Baudry et al., 2018; Munda, 
2004; Cambrainha and Fontana, 2018; Liu et al., 2017), the assessment of the different 
alternatives available is usually made considering complementary perspectives on the 
problem, each perspective related to a group of criteria and a particular context. 
Hereafter, we refer to each group of related criteria as a view, and emphasise that 
different views may have different numbers of associated criteria. 

In this approach, an MCDM problem with m alternatives, n criteria, and v views 
(referred to as an MV-MCDM problem) can be formulated in the form of v decision 
matrices: 

( )

1 2

11 12 11

21 22 22

1 2

                                          

. . ..

. . ..

. . ..

k

k

k

kk
k

k

n

n

n

vv
ij m n

m m mnm

c c c
x x xA
x x xA

x

x x xA

×

 
 
 
 

= =  
 
 
  
 









 (26) 

( )1 2, , ,k
k

v
nw w w w=   

where A1, A2, …, Am denote the set of feasible alternatives, 1 2, , , knc c c  represent the nk 
evaluation criteria associated to the kth view (k = 1, …, v), xij is the performance rating of 
alternative Ai under criterion cj (j = 1, …, nk), and wj stands for the weight of this 
criterion. Notice that .kk

n n=  By this means, one can regard the MV-MCDM 

formulation [equation (26)] as a generalisation of the standard MCDM problem  
[equation (1)]. 

In order to cope with the MV-MCDM problem, we introduce in the sequel a new 
methodology based on CCA. Such methodology is generic enough to permit the easy 
extension of well-known MCDM methods, in particular SAW and TOPSIS. Without loss 
of generality, we consider the existence of only two criteria views (i.e., v = 2), since, as 
shown in Section 2.2, the standard CCA works only on a paired dataset. However, if two 
or more criteria views are indeed available, a generalised version of CCA could still be 
used (Kettering, 1971). 

The steps of the proposed methodology are given as follows – refer to Figure 1. 

Step 1 Identify the alternatives, criteria, and views 

First of all, the DM has to clearly define the sets of m alternatives, n criteria, and 
v views. The alternatives should be the same across the views. The criteria set 
should be partitioned into the views they are associated with, reflecting the 
different perspectives, contexts or scenarios related to the decision problem in 
hand. Usually, two criteria belonging to the same view are more correlated to 
each other than two criteria belonging to different views, although this rule is 
not strict. Since we are considering only v = 2 views in this modelling, they are 
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hereafter referred to as the independent view (X), with nx criteria, and the 
dependent view (Y), with ny criteria. 

Step 2 Identify the correlations between the views and setup the criteria weights via 
CCA 

In this step, CCA is applied to both views, following the steps given in  
Section 2.2, in order to obtain the r = min(nx, ny) pairs of canonical weights wx 
and wy – refer to equations (21) and (22). As a result, CCA will deliver r pairs of 
canonical variates, one associated with the independent view and another 
associated with the dependent view. For each pair of canonical variates, their 
correlation is computed according to equation (11). Then, the several canonical 
weights wx will be used in the next step to weigh the criteria pertaining to the 
independent view, whereas the canonical weights wy associated with the 
dependent criteria are disregarded. 

Step 3 Apply the chosen MCDM method on the independent view 

Based on the r canonical weights wx available for the independent view, the 
chosen standard MCDM method (either SAW or TOPSIS) is executed r times in 
this step, one over each set of weights. As a result, each alternative is assessed r 
times. 

Step 4 Aggregate the scores and generate the final ranking 

With the r assessments (scores) available for each alternative, one can produce a 
final, global score via the Choquet integral. For this purpose, the fuzzy densities 
of the Sugeno measure [equation (25)] are set as the correlations of the 
canonical variates computed in the second step. An alternative aggregation 
operator, based on the area of radar charts, may be also employed here. This 
novel operator is formulated in detail in Appendix. With the aggregated scores 
in hand, the full ranking of the alternatives can be finally produced (one ranking 
for each aggregation method used). 

Regarding specifically the last step of the methodology, we advocate the adoption of the 
canonical correlations as fuzzy densities gi for the Sugeno measure due to the following 
reason. Making a parallel between the fuzzy density and the canonical correlation, it can 
be noticed that while the value of fuzzy density gi is interpreted as the (possibly 
subjective) importance of a source of information for the decision process, the canonical 
correlation of a pair of canonical variates determines the degree of importance of this pair 
in the relationship between the sets of variables. As mentioned, the computation of the 
canonical variates is performed sequentially, with each pair capturing the residual 
variance that is still available for the original variables (the variance not explained by the 
first pair is captured by the following pairs of orthogonal canonical variates). This way, 
the values of the canonical correlations decrease for each pair in the sequence, as shown 
in equation (10). Since in the third step of the methodology we generate r scores for each 
alternative based on the projection weights associated with each pair of canonical 
variates, we have used their correlations to represent not only the relevance of each score 
individually but also the relevance of the accumulated aggregation of such scores 
(Krishnan et al., 2015). 
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Figure 1 Steps of the proposed MV-MCDM methodology 

 

One relevant property of our multi-view methodology is that it allows the detection of 
redundant criteria, that is, criteria belonging to the same view showing high correlation of 
their evaluations (i.e., intra-view correlation). This is made possible by examining the 
magnitude of the canonical weight assigned to each criterion in a given canonical variate. 
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Redundant criteria tend to be assigned with almost-null values. In the extreme case that 
two or more criteria are fully correlated, the application of CCA can not happen, which 
signals an error indicating the multicollinearity condition (Meloun and Militký, 2011). 

Another distinctive feature of our multi-view methodology is that it allows the 
reduction of the problem size (i.e., the decision matrix) by considering only a single 
criteria view (i.e., the independent view) for performing the assessment of the alternatives 
– refer to the second step. This is feasible since CCA estimates the canonical weights so 
as to maximise the correlation between the different groups of criteria (i.e., inter-view 
correlation). This way, the values of the canonical weights wx of the independent-view 
criteria already reflect (some of) the judgment information available in the  
dependent-view criteria, which can then be set aside. (Of course, if the DM wishes to 
consider all criteria in the analysis, this is readily possible by also making use of wy.) 
Eventually, if more than two views were available in the decision problem, the same 
procedure could still be pursued via generalised CCA (Kettering, 1971), leading to a 
greater reduction in the size of the decision matrix. 

Leveraging on this property, if, for some reason, one of the criteria views were 
deemed as more significant than the other(s), the DM could regard it as the single 
independent view. Conversely, if the significance of the different views was quite the 
same, but their cardinalities were very distinct, gains in computational performance could 
be obtained by sticking with the view with less criteria. Even when a natural criteria split 
does not exist, the multi-view methodology could still be adopted using manually crafted 
splits. This may be particularly useful when the evaluations of some criteria (that will 
serve as dependent-view criteria) are much uncertain (and thus not trustful) or not easy to 
be measured/estimated. 

Finally, we claim here that using the weights elicited by CCA to weigh the criteria in 
MCDM is indeed a very reasonable choice, even when considering the standard  
(single-view) setting. This is because the canonical weights identify the relative 
importance of the different criteria: The higher the value of a canonical weight, the higher 
is the contribution of the associated criterion to each induced canonical variate. 

In order to empirically support our claim, we conducted experiments on a synthetic, 
two-view decision problem having m = 500 alternatives and n = 8 criteria in total. The 
numbers of criteria associated with the independent and dependent views were set 
arbitrarily as five and three, respectively. A hundred simulations were run, each time 
randomly sampling (without replacement) half of the alternatives to conduct the MCDM 
process. In the simulations, we considered both our multi-view methodology (with the 
two aggregation methods) and the standard versions of SAW and TOPSIS, the latter 
operating on all criteria. For setting up the criteria weights for SAW and TOPSIS, three 
methods were considered, namely via entropy, standard deviation, or CCA. The first two 
are very well-known and widely used methods in the MCDM literature (Hwang and 
Yoon, 1981; Wang and Luo, 2010; Dammak et al., 2015). 

Figure 2 shows the average spread of the final scores of the randomly chosen  
250 alternatives across all runs. The higher the standard deviation of the scores, the more 
sensitive is the outcome (ranking) of the decision-making process to the way the criteria 
weights was computed. Regardless of the type of problem (single or multi-view), the 
scores generated via canonical weights were more stable and robust to the variation in the 
chosen alternatives. As a result, the entailing decision-making process could be deemed 
as more consistent. 
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Figure 2 Effect of the way the criteria weights are computed on the decision scores generated by 
MV-MCDM, SAW, and TOPSIS (see online version for colours) 

 

4 Results 

In order to reveal the convenience of the proposed methodology, we present here a 
numerical example and results showing the step-by-step application of the MV-MCDM 
process to a synthetic, two-view decision problem. This type of validation approach has 
been widely used in the MCDM literature (Zhang et al., 2011; Xian et al., 2018; 
Kacprzak, 2019). 

The first step of the methodology involves the explicit definition of the decision 
matrices related to the different views. In this example, for the sake of clarity and 
simplicity, we consider only m = 10 alternatives and v = 2 views, namely the independent 
view (with n1 = 5 criteria) and the dependent view (with n2 = 3 criteria). The two decision 
matrices are shown in Tables 1 and 2. 

In order to setup the criteria weights for the independent view, CCA is applied in the 
second step of MV-MCDM. In this case, there are r = min(n1, n2) = 3 sets of canonical 
weights wx, which are provided in Table 3. Notice that the sign of the weight associated 
with a given independent-view criterion determines its type, whether benefit (positive 
sign) or cost criterion (negative sign) – see Section 2.1. 
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Table 1 Decision matrix of the first view 

 c1 c2 c3 c4 c5 
1 1.222 1.129 0.905 1.107 0.483 
2 0.982 0.565 1.162 0.263 1.417 
3 0.239 0.067 0.173 0.600 0.038 
4 2.243 0.183 1.605 0.151 2.111 
5 0.873 0.602 1.308 0.471 0.740 
6 0.540 0.358 0.039 0.045 0.056 
7 0.584 0.392 0.682 0.712 0.495 
8 0.020 0.017 0.129 0.570 0.426 
9 1.497 0.313 1.151 0.123 1.437 
10 0.009 0.091 0.262 0.856 0.310 

Table 2 Decision matrix of the second view 

 c1 c2 c3 
1 0.797 1.086 0.907 
2 1.398 0.875 0.936 
3 0.219 0.653 0.685 
4 1.576 0.374 2.079 
5 1.043 0.586 1.227 
6 0.018 0.150 0.228 
7 0.507 0.909 0.881 
8 0.307 0.571 0.676 
9 1.154 0.152 1.120 
10 0.028 1.043 0.265 

Table 3 Sets of criteria weights achieved with CCA 

 (1)
xw  (2)

xw  (3)
xw  

1 –0.037 0.033 0.152 
2 0.020 –0.061 –0.292 
3 –0.045 0.106 –0.237 
4 –0.034 –0.113 0.239 
5 –0.030 –0.014 0.101 

Moreover, the correlations for the r pairs of canonical variates are computed, which are 
depicted in Figure 3. It is apparent that the correlation of the third pair of canonical 
variates (0.24) is not as significant as the correlations of the first two pairs (viz. 0.96 and 
0.88). Therefore, the decision scores generated with (3)w x  should be deemed as less 
significant in the aggregation process than the scores produced with (1)w x  and (2)w .x  
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Figure 3 Correlations for the r = 3 pairs of canonical variates (see online version for colours) 

 

In the third step, the standard MCDM methods are invoked r times to calculate the scores 
for each alternative, each time using a different instance of wx. Tables 4 and 5 show the 
scores obtained with SAW and TOPSIS, respectively. 

Figure 4 Radar charts for MV-MCDM with SAW (see online version for colours) 
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Table 4 Scores produced for each alternative by SAW 

 (1)
xw  (2)

xw  (3)
xw  

1 0.154 0.024 0.018 
2 0.110 0.069 0.030 
3 0.271 0.138 0.136 
4 0.091 0.124 0.057 
5 0.102 0.044 0.023 
6 0.639 0.471 0.329 
7 0.087 0.039 0.031 
8 0.220 0.256 0.363 
9 0.123 0.141 0.053 
10 0.309 0.095 0.096 

Table 5 Scores produced for each alternative by TOPSIS 

 (1)
xw  (2)

xw  (3)
xw  

1 0.488 0.296 0.405 
2 0.482 0.678 0.415 
3 0.692 0.449 0.650 
4 0.294 0.876 0.546 
5 0.496 0.625 0.398 
6 0.784 0.539 0.518 
7 0.597 0.444 0.571 
8 0.689 0.454 0.652 
9 0.430 0.777 0.512 
10 0.648 0.384 0.667 

The last step is to aggregate the r MCDM scores of each alternative into a global score. 
For this purpose, we have adopted two aggregation approaches, one using the Choquet 
integral and the other using the operator based on radar charts (hereafter referred to as 
RADAR). 

For SAW as internal MCDM method, the global scores and final rankings yielded by 
each aggregation operator are shown in Tables 6 and 7. For the first operator, we should 
first setup the density values of the Sugeno measure as the canonical correlations, which 
are 0.96, 0.88, and 0.24. Then, we resort to equation (25) to calculate the λ-fuzzy values, 
which are given in Table 8. Figure 4, in turn, brings the charts and respective area scores 
for each alternative generated by RADAR. 

For TOPSIS as internal decision method, the global scores and final rankings 
generated by MV-MCDM with the Choquet integral and RADAR are shown in Tables 9 
and 10. The canonical correlations for the density values and the λ-fuzzy values of the 
Sugeno measure are the same given before. Figure 5, in turn, brings the radar charts and 
respective area scores for each alternative generated by the second aggregation method. 
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Table 6 Global scores and final ranking achieved by MV-MCDM configured with SAW and 
Choquet integral 

Alternative Score Rank 
1 0.014 10 
2 0.020 8 
3 0.155 4 
4 0.050 5 
5 0.019 9 
6 0.165 3 
7 0.031 7 
8 0.616 1 
9 0.031 6 
10 0.519 2 

Table 7 Global scores and final ranking achieved by MV-MCDM configured with SAW and 
RADAR 

Alternative Score Rank 
1 0.002 6 
2 0.001 8 
3 0.018 3 
4 0.001 7 
5 0.001 9 
6 0.873 1 
7 0.000 10 
8 0.084 2 
9 0.004 5 
10 0.016 4 

Table 8 λ-fuzzy values of the Sugeno measure 

 λ-fuzzy 
1 0.000 
2 0.237 
3 0.883 
4 0.912 
5 0.961 
6 0.971 
7 0.999 
8 1.000 
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Figure 5 Radar charts for MV-MCDM with TOPSIS (see online version for colours) 

 

Table 9 Global scores and final ranking achieved by MV-MCDM configured with TOPSIS 
and Choquet integral 

Alternative Score Rank 
1 0.421 10 
2 0.653 6 
3 0.654 5 
4 0.837 1 
5 0.606 7 
6 0.596 8 
7 0.574 9 
8 0.656 4 
9 0.746 2 
10 0.658 3 

Based on the above results, some comments can be made. Regarding the SAW method, 
we noticed that the rankings generated using the RADAR and Choquet integral methods 
agreed only on alternatives #2 and #5 (ranks #8 and #9, respectively). This reveals that 
the SAW method can be very sensitive to the chosen aggregation method, not keeping 
stable, for example, the choice of the best and worst alternatives. Regarding TOPSIS, the 
rankings generated by this method also varied significantly; however, they could at least 
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agree on the choice of the best and worst alternatives. So, this method could be 
considered relatively more reliable than the previous one. 
Table 10 Global scores and final ranking achieved by MV-MCDM configured with TOPSIS 

and RADAR 

Alternative Score Rank 
1 0.025 10 
2 0.070 7 
3 0.127 3 
4 0.162 1 
5 0.060 9 
6 0.123 5 
7 0.068 8 
8 0.127 4 
9 0.107 6 
10 0.132 2 

5 Conclusions and future work 

In this paper, we have introduced a new conceptual framework to MCDM, referred to as 
MV-MCDM, which is centred upon the notion of criteria views. MV-MCDM is 
particularly useful for those circumstances in which two or more groups of judgment 
criteria are available and the DM wishes to capture the linear relationships that may be 
available between these groups in order to better ascribe the weights to the criteria. 

After formulating the MV-MCDM as a generalisation of the standard MCDM 
problem, we presented a generic, four-step methodology that can easily extend  
well-known MCDM methods, such as SAW and TOPSIS. The methodology is based on 
the canonical weights and canonical correlations produced by CCA, when operating on 
pairs of criteria views. Interestingly, we showed that by resorting to MV-MCDM one 
could perform the decision analysis by considering only one of the views available, 
which might lead to a substantial reduction in the problem (decision matrix) size. 
Besides, we also argued, based on results of simulations, that the usage of canonical 
weights as criteria weights can be beneficial even to the standard (single-view) setting. 

We also established that MV-MCDM can be instantiated with different aggregation 
methods so as to combine the weighted criteria values generated via different sets of 
canonical weights. In particular, simulations on a synthetic, two-view problem 
demonstrated the step-by-step application of MV-MCDM configured with two 
aggregation operators, namely the Choquet integral and a novel operator based on radar 
charts. Specifically for the first operator, we provided arguments in favour of adopting 
the canonical correlations generated by CCA to serve as density values for the Sugeno  
λ-fuzzy measure. 

Although the proposed approach shows distinctive features, its formulation, as 
derived here, considers solely two criteria views. Another limitation of the present work 
is that the current version of MV-MCDM assumes only crisp values for the criteria. 
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Besides, it does not capture nonlinear correlations that may exist among the different 
criteria groups. 

As ongoing work, we are researching how to apply MV-MCDM to group  
decision making, where two or more DMs make their assessment based on distinct 
(possibly private and non-overlapping) groups of criteria. The use of a nonlinear version 
of the CCA is also under consideration. Besides, due to the stability property shown by 
criteria weights calculated via CCA, we are investigating how this approach could deal 
with the ranking reversal problem in MCDM. We also plan to deploy the new 
methodology in a real-case study that involves the comparative assessment of several 
branches of a regional bank, according to several criteria views. Finally, we shall 
investigate how the information captured by canonical loadings and cross-loadings could 
be somehow incorporated into the proposed methodology in order to further improve the 
decision-making process. 
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Notes 
1 Although CCA has been widely used as a tool for MVL, we would like to stress that  

MV-MCDM is not a machine learning approach to solve the MCDM problem. It is solely 
inspired by the idea of MVL. 

Appendix 

Aggregation method based on radar charts 

In a nutshell, a radar chart (Wilkinson, 2005) is a 2D diagram to display multivariate data 
that charts multiple quantitative variables (categories) on one graph for easy comparison. 
Categories become axes on the graph, and the distance of a point in an axis from the 
centre indicates the value of the score in the associated category. Typically, a radar chart 
looks like an irregular polygon, and several charts can be stacked on top of each other, all 
with the same centre. 

Based on these features, we propose a new aggregation method for MCDM, whereby 
the categories in the radar chart represent the results of r MCDM methods operating on a 
certain alternative. The score of an alternative produced by a given MCDM method is 
given by the distance from a point to the centre in the associated axis in the chart. The 
connection between the points corresponding to the different scores of an alternative 
composes a polygon, the area of which will be interpreted as the final, global score of the 
alternative. In MV-MCDM, in particular, the interpretation of the chart is a bit different. 
Each of the r categories in the chart represents the score produced by the internal  
MCDM method (either SAW or TOPSIS) for a given set of canonical weights to the 
independent-view criteria. 

In a more formal basis, the new operator can be defined as follows. 

Theorem 1: A radar-chart operator Ψ of dimension r is a mapping Ψ : r →R R  that has 
an associated scoring vector s of dimension r, such that: 

( )1 2Ψ , , , Δ ,rs s s A=  (27) 
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where sr ∈ [0, ∞] is the rth MCDM score and ΔA denotes the area of the polygon formed 
by the points corresponding to each score on the radar chart. 

As a didactic example, consider an MV-MCDM problem for which there are r = 3 
pairs of canonical variates produced by CCA. As shown in Figure 6, let a, b and c be the 
score values produced for the different canonical weights. In this case, the generated 
polygon is a triangle, whose area should be computed to give the final score. Remember 
that the area of any polygon boils down to a sum of triangle areas (Vialar, 2016). In this 
case, it is actually composed of three small triangles, Δba'a, Δbb'c, and Δcc'a, whose 
areas can be calculated by the cosine law, as follows: 

2 2 2 2 cos( )c a c ac γ′ = + −  (28) 

where γ denotes the angle formed by the sides of lengths a and c, which is opposite to the 
side of length c'. The other two relations are analogous: 

2 2 2

2 2 2

2 cos( ),
2 cos( ).

a a b ab
b b c bc

′ = + −
′ = + −

α
β

 (29) 

Using Heron’s formula (Raifaizen, 1971), the semi-perimeter can be calculated as 

( ) ,
2

a b cp
′ ′ ′+ +=  (30) 

whereas the area Δ of a triangle is given by 

Δ ( )( )( ).p p a p b p c′ ′ ′= − − −  (31) 

Finally, ( )1 2Ψ , , , Δ Δr i
s s s A i= =  is given as the final score of an alternative by the 

MV-MCDM approach, where Δl is the area of the lth triangle. 

Figure 6 Aggregation method based on radar charts – example with r = 3 categories (scores)  
(see online version for colours) 

 


