

International Journal of Web and Grid Services

ISSN online: 1741-1114 - ISSN print: 1741-1106
https://www.inderscience.com/ijwgs

A feature-driven variability-enabled approach to adaptive
service compositions

Chang-ai Sun, Zhen Wang, Zaixing Zhang, Luo Xu, Jun Han, Yanbo Han

DOI: 10.1504/IJWGS.2023.10054495

Article History:
Received: 06 April 2022
Last revised: 22 October 2022
Accepted: 14 November 2022
Published online: 06 March 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijwgs
https://dx.doi.org/10.1504/IJWGS.2023.10054495
http://www.tcpdf.org

Int. J. Web and Grid Services, Vol. 19, No. 1, 2023 79

A feature-driven variability-enabled approach to
adaptive service compositions

Chang-ai Sun*, Zhen Wang and Zaixing Zhang
School of Computer and Communication Engineering,
University of Science and Technology Beijing,
Beijing, 100083, China
Email: casun@ustb.edu.cn
Email: zhenwang@xs.ustb.edu.cn
Email: 13051508603@163.com
*Corresponding author

Luo Xu
North China Institute of Computing Technology,
Beijing, 100083, China
Email: xdotstone@hotmail.com

Jun Han
Department of Computer Science and Software Engineering,
Swinburne University of Technology,
Hawthorn, VIC 3122, Australia
Email: jhan@swin.edu.au

Yanbo Han
Beijing Key Laboratory on Integration and
Analysis of Large-Scale Stream Data,
North China University of Technology,
Beijing, 100144, China
Email: yhan@ict.ac.cn

Abstract: Service compositions are widely used to construct complex
applications. Due to the frequent changes of environment and requirements,
service compositions need to be adaptable enough. In this work, we
propose a feature-driven variability-enabled adaptive service composition
approach to systematically treat the variability in the full life-cycle of service
compositions. Specifically, the feature model is introduced to represent
common and variable requirements and drive the variability design of service
compositions. An abstract service composition model is used to define
the variable business process. Rules and algorithms are then defined to
transform the feature model to the abstract service composition model, from
which different process instances are derived on demand to meet different
requirements. We have developed a prototype tool to facilitate and automate

Copyright © 2023 Inderscience Enterprises Ltd.

80 C-a. Sun et al.

our approach as much as possible. Finally, a case study is conducted
to demonstrate the proposed approach and validate its effectiveness and
efficiency.

Keywords: variability management; adaptive service compositions; abstract
service composition model; feature model; model transformation.

Reference to this paper should be made as follows: Sun, C-a., Wang, Z.,
Zhang, Z., Xu, L., Han, J. and Han, Y. (2023) ‘A feature-driven
variability-enabled approach to adaptive service compositions’, Int. J. Web
and Grid Services, Vol. 19, No. 1, pp.79–112.

Biographical notes: Chang-ai Sun is a Professor in the School of Computer
and Communication Engineering, University of Science and Technology
Beijing. Before that, he was an Assistant Professor at Beijing Jiaotong
University, China, a Post-doctoral Fellow at the Swinburne University of
Technology, Australia, and a Post-doctoral Fellow at the University of
Groningen, The Netherlands. He received his Bachelor’s in Computer Science
from the University of Science and Technology Beijing, China, and PhD in
Computer Science from the Beihang University, China. His research interests
include service-oriented computing, software testing, and program analysis.

Zhen Wang is a PhD student in the School of Computer and Communication
Engineering, University of Science and Technology Beijing, China. She
received her Bachelor’s in Computer Science and Technology from the
University of Science and Technology Beijing, China. Her current research
interests include service-oriented computing and internet of things.

Zaixing Zhang is a Master’s student in the School of Computer and
Communication Engineering, University of Science and Technology Beijing.
His current research interest is service-oriented computing.

Luo Xu is a researcher in the North China Institute of Computing Technology.
He received his PhD in Computer Software and Theory from the Beihang
University, China. His research interests include software architecture and
software testing.

Jun Han is a Professor in the Department of Computer Science and Software
Engineering, Swinburne University of Technology, Australia. He received his
PhD in Computer Science from The University of Queensland, Australia. His
research interests include service computing and software architecture.

Yanbo Han is a Professor at the North China University of Technology. He
is also the Director of Beijing Key Laboratory on Integration and Analysis
of Large-Scale Stream Data. He received his PhD in Computer Science from
the Technical University of Berlin, Germany. His research interests include
service computing and data analysis.

A feature-driven variability-enabled approach 81

1 Introduction

Service-oriented architecture (SOA) has become a mainstream application paradigm
in distributed and heterogeneous environments (Lemos et al., 2015). Increasingly,
companies, such as Netflix and Google, employ this architecture to improve the
development efficiency and scalability of their business systems (Bai et al., 2009). In this
context, the complex business process can be implemented by coordinating distributed
services according to specifications, which are known as service compositions (Peltz,
2003). At the same time, the operating environment and requirements of the services
may change dynamically and frequently. For instance, one or more component services
may become unavailable at run-time or user requirements may suddenly change for
some unexpected reason. Accordingly, service compositions need to be adaptable to
these changes to provide the expected functionalities continuously (Xiao et al., 2011).

To address the above problem, several approaches have been investigated over the
past decades. Among them, a class of representative approaches are based on rules,
such as those via proxy (Ezenwoye and Sadjadi, 2007), aspect-oriented programming
(AOP) (Krishnamurty et al., 2013), and context (Urbieta et al., 2017; Valderas et al.,
2022), which normally predefine event rules at the design phase and trigger them at
run-time to achieve the adaptability of service compositions. They mainly focus on
changes of business process design and implementation without explicitly taking into
account the full lifecycle of changes. Recently, researchers have also explored artificial
intelligence (AI) techniques, e.g., AI planning (Bashari et al., 2018), reinforcement
learning (Wang et al., 2020; Gharineiat et al., 2021), and evolutionary algorithms
(Sefati and Navimipour, 2021), for adaptive service compositions. These approaches
mainly focus on optimal service selection from available services, without paying
attention to the concrete design and implementation of service compositions. Unlike
these approaches, we have explored the adaptability of service compositions from the
perspective of variability management (Sun et al., 2019a), in which various changes
within service compositions are treated as first-class objects. Key considerations include
how to identify and represent the common and variable parts in service compositions
of the underlying business processes. Specifically, for positions where the service
composition may change, a variation point is introduced, whose options are specified as
variants representing alternatives or choices. Dependencies between variants at different
variation points are specified as constraints. For a specific requirement, the collection
of choices across all the variation points forms a variation configuration. In this way,
various changes are realised by switching variation configurations, and thus the resulting
service composition is enhanced with the adaptability.

Figure 1 shows our overall framework of variability management for adaptive
service compositions (Sun et al., 2019a). The solid lines indicate the issues that
have been done in previous work, while the dotted lines indicate the issues that
will be addressed in this work. In our previous work, to support variability at
the implementation phase (the bottom layer of Figure 1), we have designed a
variability-supported service composition language named VxBPEL (Koning et al.,
2009), and two versions of VxBPEL execution engines were developed (Sun et al.,
2013, 2014), one is called VxBPEL ODE (an extension to Apache ODE) and the other
is called VxBPELEngine (an extension to ActiveBPEL). To support variability at the
architecture design phase (the middle layer of Figure 1), we have proposed a UML

82 C-a. Sun et al.

profile, called UML-VWS (Sun et al., 2010), for modelling variability in the architecture
layer, and a process to manage the variability of service compositions.

Figure 1 Three lavers of variability involved in adaptive service compositions based on
variability management

Feature
Model Provider

UML-VWS
Model Provider

VxBPEL
Model Provider

Variability Model

Features

Architecture using
UML-VWS

Implementation using
VxBPEL

Software Artifacts

Since changes normally originate from requirements, they should be captured and
explicitly modelled at the requirement analysis phase. Furthermore, the requirements’
changes in the context of SOA may be more frequent, which implies the heavy
influences on subsequent architecture design and implementation and thus the variability
of service compositions at different phases should be handled in a traceable way.
Consequently, a comprehensive framework should not only support the variability
of service compositions throughout requirement analysis, architecture design, and
implementation phases, but also retain the change traceability of software artefacts
produced over these phases. However, the variability at the requirement analysis phase
is not yet explicitly supported in the current framework (the top layer of Figure 1).

In this paper, we take another step towards the comprehensive framework for
adaptive service compositions. We resort to variability management to systematically
treat changes of business processes from the perspectives of requirements, design
and implementation, and report a practical solution to achieve the adaptability of
service compositions. Specifically, we focus on how to represent variable requirements
and operationalise them into service compositions. Accordingly, we explore feature
modelling for service compositions and model-driven techniques to further address
the variability management issue at the requirements analysis phase. In particular,
the feature model is used to express the requirement variation, in which common
and variable requirements are explicitly captured. A set of transformation rules are
designed to automatically transform a feature model to a corresponding abstract service
composition model proposed in Sun et al. (2018). The main contributions of this paper
are as follows:

1 A feature-driven variability-enabled adaptive service composition approach has
been proposed, which extends the previous work that focused on variability design
and implementation of service compositions. This work focuses on the modelling
and management of adaptability requirements through a feature model and their
realisation in adaptable service compositions and provides an alternative
perspective to address the adaptability issue compared with the state-of-the-art
work in this field.

A feature-driven variability-enabled approach 83

2 A prototype has been developed to support feature modelling and model
transformation of the proposed approach.

3 A case study has been conducted to validate the effectiveness of our approach and
evaluate its efficiency.

The rest of the paper is organised as follows. Section 2 describes a motivating example
from the car assembly domain. Section 3 introduces the underlying concepts and
techniques. The proposed approach is presented in Section 4. Section 5 describes the
prototype tool and Section 6 reports a case study and the evaluation results. Section 7
discusses the related work. Finally, Section 8 concludes the paper with pointing out
future work.

2 Motivating example

In this section, we use a scenario from the car assembly domain (Jamie, 2022) to explain
the motivation of this work.

Figure 2 Activity diagram of the car assembly process

Compose
Engine ͐ Select

Color
Select
Type

Compose
Clutch

Compose
Driveaxle͐ variable

activity

Select
Material

͐ Compose
Transmission

Compose
Chassis

͐ Compose
Skylight

Compose Car Body

Compose Drive System

Considering the production process of a car, each component of a car may be produced
by several manufacturers in different countries, which supports the assembly need to
obtain a ‘complete’ car. In view of software-defined everything, this assembly process
involves the coordination of multiple participants, each of which can be represented by
a component service. Accordingly, a simplified activity diagram of this car assembly
process is shown in Figure 2. The variable requirement for some component, which
has multiple alternative implementations, is marked as ‘variable activity’ with ‘⋄’. The
following challenges have to be responded when implementing such a composition
process.

• Challenge 1: The requirements of users may be different from each other, varying
in many aspects like colour, style, material, and size. A car manufacturer needs to
provide a variety of configurations of cars to meet these varying requirements.
For a complete/composed car, it must be equipped with four basic parts, i.e.,
‘engine’, ‘body’, ‘chassis’, and ‘drive system’, which are common and mandatory
components for a normal working car. However, the ‘skylight’ is not essential in
general and not every user has a demand for this component. In this case, it is
regarded as an optional requirement for a car. A car manufacturer needs to
identify the common and variable requirements, and provides customised car
composition solutions to satisfy different user requirements, while these solutions

84 C-a. Sun et al.

may differ in only one or a few places. This could result in the overlap, or more
precisely, redundancy, among different composition processes due to the common
parts between them, causing the increase of maintenance complexity, and the
decrease of production efficiency.

• Challenge 2: Complex constraints exist among car components in a car
composition process. Take the ‘body’ feature for illustration, it has three
mandatory attributes, namely ‘body type’, ‘body colour’, and ‘body material’. For
the variable requirement ‘body colour’, multiple colour choices are provided, such
as ‘grey’, ‘white’, and ‘black’. A specific colour needs to be selected for a real
implementation (car) during the composition process. Obviously, there is an
exclusive constraint among the colour choices. More specifically, only one colour
choice is supported even though there are different alternatives. These constraints
are usually hidden in user requirements, and need to be analysed and explicitly
expressed in an intuitive way.

• Challenge 3: It is a long cycle to implement the production of a ‘complete’ car
from user requirements to the composed process. Automated approaches or tools
are needed (but are absent now) to reduce the workload of process designers and
developers. To complete such a service composition, rich domain knowledge is
necessary for process design and development. The composition will become
increasingly complex and time-consuming because of the large amount of
components involved, even to satisfy a simple user requirement. In addition, as
mentioned in Section 1, inherent variability in user requirements is the root cause
for such complexity in the whole process of service composition, which calls for
a systematic approach to manage and keep the traceability of variations from the
requirement analysis phase to the implementation phase for the car assembly
process.

In this study, the above car assembly process will be used to motivate our approach
since it covers all the challenges that could be faced by service compositions, regardless
of which domain service compositions are used for. Moreover, the car assembly scenario
has covered all the essential parts of our approach, and thus it will be also used for the
case study to be reported in Section 6.

3 Background

In this section, we introduce the underlying concepts and techniques of the proposed
approach, including feature-oriented domain analysis (FODA), model-driven architecture
(MDA), eclipse modelling framework (EMF), and VxBPEL.

3.1 FODA

Domain analysis is a widely adopted technique for handling the variability of
requirements. Thanks to domain knowledge, common and variable requirements of a
specific domain can be identified. FODA (Benavides et al., 2010) is one of the most
used domain analysis approaches, which identifies common and optional requirements

A feature-driven variability-enabled approach 85

as features. FODA defines features as prominent or distinctive user-visible aspects,
qualities, or characteristics of a software system or systems.

Features are further divided into mandatory and optional ones, which are used to
represent common and variable requirements, respectively.

• Mandatory feature (also called common feature) refers to the common
requirements of the domain, and is the basis of domain software artefacts. In
other words, a mandatory feature is a common feature of all domain software
artefacts. For a car, the basic parts such as ‘engine’, ‘body’, ‘chassis’ and ‘drive
system’ are essential for all cars in the car assembly domain, which are
recognised as mandatory features.

• Optional feature (also called variable feature) represents the variable requirements
of the domain which is an extension of software functions and equips domain
software artefacts with unique characteristics. For instance, the ‘skylight’ is not
required for every car, and thus is an optional feature for a car.

A feature model is an abstraction of common and variable requirements of all software
artefacts in a domain (Yu et al., 2016). It uses feature as the entity to express the
problem space, and consists of a group of features and their relations. Feature model has
been widely used to capture and represent variable requirements (Bashari et al., 2018;
Narwane et al., 2016; Lian et al., 2018; Arcaini et al., 2020). In this paper, we will
employ FODA for domain requirement analysis and correspondingly the feature model
is adapted for modelling variable requirements of service compositions.

3.2 MDA and EMF

MDA (Sebastián et al., 2020) is an approach to software design and implementation,
which provides guidelines for structuring software specifications that are expressed
as models. The core activities include the model creation and transformation. In the
context of service compositions, two important issues need to be considered, namely
how to represent a specification model of service compositions and how to derive
service composition implementations through model transformation. In this work, the
specification model is represented as a feature model, while the model transformation
is made of a set of the predefined model transformation rules.

EMF (Budinsky et al., 2004) is a powerful framework and code-generation facility
for building Java applications based on simple model definitions. An EMF model can be
defined in the form of Java interface, UML class diagram, and XML schema. The EMF
model serves as a common high-level representation bridging the gap of these three
forms. Modelers can define models in one form, from which others can be generated
through the EMF metamodel. EMF models are represented persistently by default with
XML Metadata Interchange (XMI) which is a standard interchange mechanism for
serialising metadata.

In EMF, Ecore is used to describe models, i.e., a metamodel. Figure 3 shows a
simplified subset of the Ecore model, and only the core Ecore elements are introduced.

• EClass represents a modelled class, with a name, zero or more attributes, and
zero or more references.

• EAttribute represents an attribute with a name and a type.

86 C-a. Sun et al.

• EReference represents one end of an association between two classes. It includes
a name, a Boolean flag to indicate if it represents a containment, and a reference
type which is another class.

• EDataType represents the type of an attribute like int, float, or java.util.Date.

Due to advantages such as popularity and interchangeability, we employ EMF to
represent the feature model and the service composition implementation of the proposed
approach, and the feature modelling prototype is also based on EMF. Furthermore,
we turn to EMF-based model transformation for enabling the traceability of changes
between different phases of service composition development. In this way, the proposed
approach reduces not only the workload of service composition development, but also
the complexity of service composition artefacts.

Figure 3 Simplified subset of the Ecore model

EClass

name: String

EAttribute

name: String
eAttributes

0..*

EReference
name: String

eReferences
0..*

containment: booleaneReferenceType1

EDataType

name: String
eAttributeType

1

3.3 VxBPEL

VxBPEL (Koning et al., 2009) is an extension of the standard WS-BPEL to support
variability of service compositions. It provides variability constructs like variation point,
variant and realisation relations. To be consistent with WS-BPEL, these newly added
constructs are represented using an XML-based form and used to implement variable
business processes in a declarative way. The syntax of each VxBPEL activity/element
is illustrated below.

• <VariationPoint> represents the position possible to change. It contains multiple
available operations, and each substitute is expressed with a <Variant> element.

• <Variants> consists of a group of <Variant> which represents a scenario
constructed by a group of activities. It is defined with a function or operation to
describe an alternative plan. The contents of <Variant> can be WS-BPEL codes,
or <VariantPoint> elements for more complex variability design. By default,
there is an exclusive constraint among the alternative variants.

• <VariabilityConfigurationInformation> refers to the variability configurations of
the process.

• <ConfigurableVariationPoints> consists of a group of
<ConfigurableVariationPoint> which refers to the collection of all configurations,
with a unique id and a default configuration identified by defaultVariant.

A feature-driven variability-enabled approach 87

• <Rationale> is the text description for the element of
<ConfigurableVariationPoint>.

• <VariantInfo> is the text description for <Variant>.

• <RequiredConfiguration> refers to a specific configuration.

• <VPChoices> consists of a group of <VPChoice> which refers to the
configurations of variants at the variation points.

• <Constraint> refers to the constraints between variants, with three attributes
involving CType, variantS and variantT. CType refers to the type of constraint,
including Inclusion, Exclusive, Exclusion, Substitution and Corequisite (Sun et al.,
2019a). variantS and variantT refer to the source and target of a constraint,
respectively.

Based on VxBPEL, we have further proposed a variation-based abstract service
composition model (Sun et al., 2018). The model is first used to express the business
process logic, where positions having possible changes are abstracted as variation points,
and possible implementations are abstracted as variants within the variation points. The
execution engine VxBPEL ODE (Sun et al., 2014) is then used to configure the abstract
service composition model according to user configuration files, and finally derive the
business process instances at run-time to meet different user requirements. The multiple
process instances are isolated from each other and can co-exist at the same time.

4 Approach

In this section, we first give an overview of the proposed approach, then examine its key
issues including feature model, abstract service composition model, and transformation
between the feature model and the abstract service composition model, and finally
discuss the feature configuration and verification.

4.1 Approach overview

To address the challenges mentioned in Section 1, we propose a feature-driven
variability-enabled adaptive service composition approach, as shown in Figure 4. Here,
the marked numbers represent the order of interactions between activities, and the
arrows represent the navigation between activities, namely from the source activity
to the target activity. In our previous work, service compositions with variability are
designed without taking requirements variability into account, although they can be
customised to satisfy different user requirements. This work focuses on addressing
the two key issues, namely how to explicitly model the requirements with variability
of service compositions and how to transform such a specification model to service
composition implementation. As a result, the proposed approach together with the
previous framework constitutes a comprehensive framework that supports variability
management cross the full life-cycle of service compositions, from requirements
analysis, design, implementation, to execution and maintenance. The proposed approach
has the following major components.

88 C-a. Sun et al.

1 Domain analysis: The main task of this component is to identify commonalities
and variations of requirements in terms of domain analysis. To do that, domain
knowledge is crucial for obtaining common and variable requirements as well as
constraints among these requirements. Specifically, a feature model is presented
for representing domain requirements in the format of XMI schema, and the
subsequent feature selections are automatically mapped to variation configurations
of the business process, resulting in automatic derivation of user-specific process
instances. More details on feature modelling will be discussed in Subsection 4.2.

Figure 4 Overview of the approach (see online version for colours)

2 Service composition: To cater for both common and variable requirements in an
application domain, variable business processes are required. This can be done by
defining rules and algorithms that determine the mapping of elements in the
feature model to the element activities in the abstract service composition model.
Fortunately, performing such a model transformation becomes easy, because the
Ecore model as discussed in Subsection 3.2 can represent both the feature model
and the abstract service composition model. What we need to do is to specify the
metamodel of both models and the relationships between their model elements.
More details on the representation of the feature model and the abstract service
composition model using the Ecore model will be discussed in Subsections 4.2.2
and 4.3, respectively, while model transformation will be discussed in
Subsection 4.4.

3 Feature configuration: The domain requirements expressed as a feature model
contain both mandatory and optional ones. For a specific or personalised
requirement, the feature model needs to be customised by specifying (or selecting)

A feature-driven variability-enabled approach 89

the optional features, resulting in a feature configuration model. Such a
configuration model will be automatically verified to determine whether or not it
conforms to the predefined constraints among features. Once the feature model is
properly configured, the feature configuration will be used to guide variant
selection of the abstract service composition model, and a user configuration file
is generated for subsequent process derivation. More details on feature
configuration and verification will be discussed in Subsection 4.5.

4 Process derivation: The abstract service composition model derived from the
feature model through the automatic model transformation contains only the
skeleton of a business process, and is not an executable business process. This
service composition model is represented as a VxBPEL-based specification, which
has to be further customised according to the user configuration file corresponding
to a feature configuration model. During the customisation, necessary
implementation details [using the VxBPEL Designer (Sun et al., 2019a)] will be
enriched in order to form a complete and executable business process. More
details on process derivation will be discussed in Subsection 4.6.

Figure 5 Metamodel of the proposed feature model

Feature
Model

Relation

RefinementConstraint

Characterization

Decomposition

Specialization

Feature

Mandatory
Feature

Optional
Feature

Require

Exclude

**

2

2

0..* 0..*

Compared with the related works in this area, the proposed approach has the following
new features:

1 The variability of requirements for service compositions is explicitly treated,
which is different from those approaches related to BPMN (Mazzara et al., 2012;
Terenciani et al., 2015), WS-BPEL extension (Karastoyanova and Leymann, 2009;
Cherif et al., 2015) and UML (Sun et al., 2010; He et al., 2015) that mainly focus
on variability design or implementation without considering variability of
requirements. In our approach, variable requirements are represented in a more
intuitive and concrete way with the feature model, which makes it easier for users
and process designers to understand and manage the variability of requirements.

2 The proposed approach advances related works based on feature modelling and
configuration (Nguyen et al., 2016; Alférez et al., 2014) that only focus on
variable requirements without considering variability design and implementation.
In our approach, the variability of requirements is automatically mapped onto that

90 C-a. Sun et al.

of the abstract business process through model transformation, which not only
greatly reduces the efforts required for service composition implementation, but
also achieves the traceability of variability during the full life-cycle of service
compositions.

4.2 Feature model

The primary issue we have to address is how to explicitly model the variable
requirements of service compositions. Inspired by the FODA approach, we adopt the
feature model as a base model for requirements analysis in our approach. We first give
the definition of the feature model, then present its syntax in Backus-Naur form (BNF),
finally discuss the construction of its Ecore model using EMF.

Table 1 Definition of constraints

Constraint Description Denotation

Require If feature X is selected then feature Y must be selected X → Y
Exclude Feature X and feature Y should not be selected simultaneously X 9 Y

Table 2 Definition of refinements

Refinement Description Parent-role Child-role

Decomposition Refine a feature into its Whole Part
constituent features

Characterisation Refine a feature by identifying Entity Attribute
its attribute features

Specialisation Refine a general feature into a feature General-entity Specialised-entity
incorporating further details

Table 3 Guidelines for feature modelling

No. Description

G1 The top-level feature (the feature with the highest level of abstraction) should be a
mandatory feature.

G2 Only one type of refinements can be defined between each feature and its child features.
G3 At least one of the child features is mandatory if there is a decomposition refinement

between the parent feature and its child features.
G4 The child feature can be either mandatory or optional if there is a characterisation

refinement between its parent feature and itself.
G5 All child features are optional if there is a specialisation refinement between

their parent feature and themselves.
G6 Either characterisation or specialisation, instead of decomposition, is allowed between

a feature and its child features if there is a characterisation refinement between this
feature and its parent feature.

G7 A feature should not be further refined if there is a specialisation refinement
between the feature and its parent feature.

G8 Constraints should only be defined between optional features.

A feature-driven variability-enabled approach 91

4.2.1 Definition of the feature model

Feature modelling is a popular requirements analysis technique (Benavides et al., 2010).
To support the feature modelling of service compositions, we design a feature model in
terms of a metamodel which provides a standard and interchangeable representation and
reflects fundamental characteristics of domain analysis. The metamodel of the proposed
feature model in the UML class diagram is shown in Figure 5. We next introduce
elements, relations between elements, and their constraints in the model.

Figure 6 Syntax of the feature model

FeatureModel ::= <ID><Name><RootFeature><Constraints>[Description]
RootFeature ::= [Group]<ID><Name><IsLeafFeature>

<FeatureOptional>[Description]
Group ::= {Feature}<ID><Num><RefinetmentType>[Description]

Feature ::= [Group]<ID><Name><IsLeafFeature>
<FeatureOptional>[Description]

IsLeafFeature ::= True|False
FeatureOptional ::= Mandatory|Optional
RefinementType ::= Decomposition|Characterization|Specialization

Constraints ::= <ID><ConstraintType><XFID><YFID>
ConstraintType ::= Require|Exclude

XFID ::= <ID>
YFID ::= <ID>

Description ::= <Text>
Text ::= {a|…|z|A|…|Z}

ID ::= {a|…|z|A|…|Z}
Name ::= {a|…|z|A|…|Z}
Num ::= < -1|0|1|2|…|N>

A feature model is identified by the feature model element, which consists of a group
of features and relations among them, and the two are aggregated through the feature
model class. Feature is specialised into mandatory feature and optional feature, which
indicate common and optional features/requirements, respectively. Relation is specialised
into constraint and refinement according to the levels of feature abstraction. Constraint
defines the limitations between features at the same levels of abstraction, and aims to
enhance the control capability for domain requirements. According to our previous work
(Sun et al., 2019a), two types of constraints are defined, named as require and exclude,
and their semantics are explained in Table 1. Refinement integrates features at different
levels of abstraction into a hierarchical structure. As explained in Table 2, there are
three types of refinement, including decomposition, characterisation and specialisation.
To a large extent, more complex relations can be reduced to the combinations of these
relations. A feature at a high abstraction level is called parent feature, and a feature
refining a parent feature is called child feature. Furthermore, a set of guidelines as shown
in Table 3 are provided to further guide the modelling process. These guidelines must
be followed during the construction of feature models in order to ensure the correctness
and consistency and avoid the potential misuse due to lack of domain knowledge.

With the feature model discussed above, one can describe the domain requirements
in an accurate and formal way. All elements and the relationships between them are

92 C-a. Sun et al.

defined with clear semantics, and the guidelines are also provided to guide the feature
modelling procedure and ensure the consistency of the resulting feature model.

Figure 7 Representation of the feature model using Ecore

description

<<depends>>

0..1

constraints

Description

Text: EString

Group

ID: EString
Num: EInt
RType: RefinementType

<<enumeration>>
RefinementType

default
Characterization
Decomposition
Specialization

Feature

ID: EString
Name: EString
IsLeafFeature: EBoolean
OType: FeatureOptional

<<enumeration>>
FeatureOptional

default
Mandatory
Optional

<<enumeration>>
ConstraintType

default
Exclude
Require

FeatureModel

ID: EString
Name: EString

Constraint

ID: EString
CType: ConstraintType
XFID: EString
YFID: EString

<<depends>>

<<depends>>
description

0..1

0..*

0..1root

description

0..1

description
0..1

children
0..1

0..*

features

4.2.2 BNF and Ecore model of feature model

We now present the syntax of the feature model using the BNF (Backus et al., 1963).
Figure 6 provides a formal definition of the proposed feature model, in which the Root
feature refers to the top-level feature, and the leaf feature refers to a feature without
any child features.

Based on the above metamodel, the Ecore model of EMF is further employed to
represent the feature model, as shown in Figure 7. The EClass concerned includes
FeatureModel, Feature, Group, Description and Constraint. The EEnum includes
FeatureOptional, RefinementType and ConstraintType. The key EClass elements are
introduced below.

• FeatureModel is a high level abstraction of the domain, with EAttributes ID and
Name. ID is the unique identifier of FeatureModel, and Name shows the meaning
of EClass. Description, Feature and Constraint are aggregated through
FeatureModel, indicating the FeatureModel with 0 or 1 description, 0 or 1 root,
and 0 or more constraints, respectively.

• Feature is the abstraction of a feature. EAttribute IsLeafFeature indicates if the
feature is a leaf feature. EEnum OType shows the feature type, mandatory or
optional. Aggregation children indicates the Feature with 0 or 1 Group.

• Group represents the hierarchy of the feature model. The value of EAttribute Num
is –1 if all features included in the Group are Leaf features; otherwise, it counts
the number of Feature in the Group. EEnum RType indicates the refinements
between the feature in the Group and its Parent feature. Aggregation Features
indicates the Group with 0 or 1 Feature.

A feature-driven variability-enabled approach 93

• Constraint represents the constraint in the feature model. The constraint type is
defined with EAttribute CType. EAttributes XFID and YFID are the two features
bound to a constraint.

• Description is the illustration for EClass and EEnum. EAttribute Text is the text
content of the description.

4.3 Abstract service composition model

To realise both common and variable requirements, the abstract service composition
model described in Subsection 3.3 is used. In this service composition model, the
common business logic is handled by the traditional WS-BPEL, while the possible
changes of the business process are left to the variability constructs provided by
VxBPEL. Since WS-BPEL has been well studied, we will focus on the syntax of
VxBPEL and its representation using the Ecore model, which is the basis for the
subsequent model transformation as discussed in Subsection 4.4.

Figure 8 Syntax of VxBPEL

VxBPEL ::= <Process>{WSDL}
Process ::= <Name of Process>{variable}{PartnerLink}{faultHandle}{eventHandle}{activity}{Constraints}

PartnerLink ::= <Name of PartnerLink>[myrole | partnerrole]
myrole ::= <Name of role>

partnerrole ::= <Name of partnerrole>
variable ::= <Name of Variable><Type Name of Message>
activity ::= <atomic activity | structured activity>

atomic activity ::= <invoke | receive | reply | empty | assign | wait | throw>
structured activity ::=

<sequence | flow | if | pick | while | VariationPoint |Variants | Variant | VariabilityConfigurationInformation |
ConfigurableVariationPoints | ConfigurableVariationPoint | Rationale | VariantInfo |
RequiredConfiguration | VPChoices | VPChoice | Constraint>

VariationPoint ::= <Variants><Name of VariationPoint>{activity}
Variants ::= <Variant>
Variant ::= [VariantInfo][RequiredConfiguration]<Name of Variant>{activity}

VariabilityConfigurationInformation ::= <ConfigurableVariationPoints><Name of VariabilityConfigurationInformation>
ConfigurableVariationPoints ::= <ConfigurableVariationPoint>
ConfigurableVariationPoint ::= <Variants>[Rationale]

RequiredConfiguration ::= <VPChoices>
VPChoices ::= {VPChoice}
VPChoice ::= <vpname><variant>

vpname ::= <Name of VariationPoint>
variant ::= <Name of Variant>

Constraints ::= <ConstraintType><variantS><variantT>
ConstraintType ::= <Inclusion | Exclusive | Exclusion | Substitution | Corequisite>

variantS ::= <Name of Variant>
variantT ::= <Name of Variant>

Rationale ::= <Text>
VariantInfo ::= <Text>

Text ::= {a|…|z|A|…|Z}

The formal of syntax of VxBPEL using BNF is shown in Figure 8. Similar to
the feature model, the abstract service composition model can also be represented
in the Ecore model of EMF. Since VxBPEL is an extension of WS-BPEL
with variability constructs, the Ecore model of VxBPEL consists of two parts:
one for WS-BPEL (refer to https://eclipse.googlesource.com/bpel/org.eclipse.bpel/+/
MultiTab-DomFacade/plugins/org.eclipse.bpel.model/src/model/bpel.ecore), as shown in
Figure 9, and the other for variability constructs provided in VxBPEL, as shown in
Figure 10.

Note that Figure 9 only shows a subset of the Ecore model of WS-BPEL for
simplicity, while Figure 10 mainly shows the Ecore model for variability constructs.

94 C-a. Sun et al.

Specifically, the Activity class is extended for the construction of VariationPoint,
Variants, Variant, VPChoices, and VPChoice, and the BPELExtensibleElement
is extended for the construction of VariabilityConfigurationInformation,
ConfigurableVariationPoints, ConfigurableVariationPoint, RequiredConfiguration, and
Constraint. The EEnum ConstraintType supports the five types of variant dependencies,
and the classes VariantInfo and Rationale are supported by extending the Documentation
class.

Figure 9 Fragment of the Ecore model of WS-BPEL

Extensions

Links

Sequence

BPELExtensibleElement

Process

Activity

While If Assign Invoke

PartnerActivity

FaultHandler

PartnerLinks

0..1 partnerLinks

0..1
faultHandler

1 activity
activities

Figure 10 Ecore model of the extended constructs of VxBPEL

ConfigurableVariationPoint

id: EString
defaultVariant: EString

ConfigurableVariationPoints

VariationPoint

Variants Variant

Activity

BPELExtensibleElement

VariabilityConfigurationInformation
Constraint

CType: ConstraintType
variantS: EString
variantT: EString

Documentation

lang: EString
value: EString
source: EString

Rationale

VPChoices

VPChoice

vpname: EString
variant: EString

RequiredConfiguration

VariantInfo

<<enumeration>>
ConstraintType

default
Inclusion
Exclusive
Exclusion
Substitution
Corequisite

vpchoices

0..1

0..*

activities

1..*

variant

0..1variants

0..1

ConfigurableVariationPoint

1

configurablevariationpoints

0..1

constraint

0..1

documentation

activities 1..*

vpchoice

0..*

0..1
requiredconfiguration

<<depends>>

0..1variantinfo0..1

rationale

variants1

4.4 Model transformation

As mentioned in Subsection 4.1, model transformation will be used to reduce the
effort required by service composition development and trace the variability at different
phases. In our case, the feature model representing mandatory and optional requirements

A feature-driven variability-enabled approach 95

serves as the source model, while the abstract service composition model with variability
design is the target model. Before model transformation, a clear understanding of the
syntax and semantics of both the source and target models is necessary, as formally
defined in Subsections 4.2.2 and 4.3, respectively.

Among various techniques available (Czarnecki and Helsen, 2006), we adopt
metamodel mapping for the implementation of model transformation since both
metamodels of source and target models are represented using the Ecore model.
Furthermore, the key is to design the mapping rules for key elements between source
and target metamodels, and these mapping rules will then guide the transformation
process to produce the target model.

4.4.1 Mapping rules

Typically, SOA adopts a vertical service composition style in which a component
service normally implements a specific functionality (or feature) corresponding to an
activity in the resulting service composition. In this context, a natural way of designing
mapping rules is to map features of the feature model to activities of the abstract service
composition model. Furthermore, each feature in the source model should be mapped
to a corresponding activity in the target model. Taking into account the semantics and
syntax of source and target models, we design the following mapping rules:

• Rule 1: A mandatory leaf feature of the source model is mapped to an invoke
activity of the target model.

• Rule 2: An optional leaf feature of the source model is mapped to the variability
design in the target model, i.e., mapping this feature to a variation point and a
variant of the target model.

• Rule 3: An optional feature, which is neither a leaf feature nor holding a
specialisation refinement with its child features, is mapped to the variability
design in the target model, i.e., mapping this feature to a variation point and a
variant of the target model.

• Rule 4: A non-leaf feature which holds a specialisation refinement with its child
features is mapped to the variability design in the target model, i.e., mapping this
feature to a variation point and its child features as variants.

4.4.2 Transformation algorithms

With the mapping rules above, we further design transformation algorithms to automate
the transformation process. Algorithm 1 describes how a feature model is transformed
to a VxBPEL-based abstract service composition model at a high level, the input is a
feature model (i.e., the source model), and the output is an abstract service composition
model (i.e., the target model).

Algorithm 2 implements the transformation process in an iterative procedure, namely
repeatedly mapping a feature of the feature model to an activity of the abstract service
composition model according to the applicable mapping rules. We further explain the
transformation procedure of Algorithm 2 as follows:

96 C-a. Sun et al.

Algorithm 1 Model transformation
Require: A feature model fm;
Ensure: An abstract service composition model vp.
1: procedure Convert(fm, vp)
2: Initialise vp, process ← ∅, WSDL ← ∅;
3: Define Feature f = null, Activity a ← Sequence Activity;
4: Get Root Feature by parsing fm;
5: f ← Root Feature;
6: Convert f into process activity;
7: Add a under process activity;
8: HandleFeature(f , a); ▹ Algorithm 2
9: end procedure

Algorithm 2 Feature mapping
Require: A feature of the feature model f ;
Ensure: An activity of the abstract service composition model asc.
1: procedure HandleFeature(f , asc)
2: Define Refinement Type rtype = null, Feature f child = null, Activity a vp = null;
3: if f .isLeafFeature == ‘true’ then
4: if f .OType == ‘Mandatory’ then
5: Convert f into invoke activity under asc; ▹ Rule 1
6: end if
7: if f .OType == ‘Optional’ then
8: Convert f into V ariationPoint activity and V ariant activity under asc; ▹ Rule 2
9: end if
10: else
11: rtype ← refinement type between f and f ’s child features;
12: if f .OType == ‘Mandatory’ and rtype ̸= ‘Specialisation’ then
13: for each child feature of f do
14: f child ← child feature of f ;
15: HandleFeature(f child, asc); ▹ handling child features
16: end for
17: end if
18: if f .OType == ‘Optional’ and rtype ̸= ‘Specialisation’ then
19: Convert f into V ariationPoint activity and V ariant activity under asc; ▹ Rule 3
20: a vp ← V ariant activity;
21: for each child feature of f do
22: f child ← child feature of f ;
23: HandleFeature(f child, a vp);
24: end for
25: end if
26: if rtype == ‘Specialisation’ then
27: Convert f into V ariationPoint activity under asc; ▹ Rule 4
28: for each child feature of f do
29: f child ← child feature of f ;
30: Convert f child into V ariant activity;
31: end for
32: end if
33: end if
34: end procedure

A feature-driven variability-enabled approach 97

Step 1 For a given feature of the feature model, it is necessary to determine whether
this feature is a leaf one or not. If yes (line 3), jump to step 2; otherwise
(line 10), jump to step 3.

Step 2 Determine the type of the feature. If the feature is a mandatory one, it is
mapped to an invoke activity of the abstract service composition model
according to rule 1 (lines 4–6); if the feature is an optional one, it is mapped
to a variation point and also a variant according to rule 2 (lines 7–9).

Step 3 Determine both the type and refinement relation between this feature and its
child features. If the feature is an optional one and the refinement is not
specification, it is set as a variation point and a variant according to rule 3
(lines 18–25), and then recursively back to step 1 to handle each child
feature of this feature; if the refinement is specification, it is mapped to a
variation point, and its child features are mapped to variants under the
variation point according to rule 4 (lines 26–32); otherwise (lines 12–17),
recursively back to step 1 to handle each child feature of this feature.

4.5 Feature configuration and verification

Given a feature model corresponding to requirements of all service compositions of
a domain, the requirements for a specific service composition can be met through a
feature configuration. Specifically, since the feature model contains both mandatory and
optional features, a configuration model can be obtained through the customisation, i.e.,
by activating or deactivating optional features. This configuration process must follow
the constraints between features. As defined in Figure 6, a constraint is a four-tuple
<ID, ConstraintType, XFID, YFID>, where (ID) indicates the identifier of the
constraint, (ConstraintType) refers to the constraint relation, (XFID) and (YFID) refer to
source and target feature, respectively. Since we have formally defined the semantics for
various types of constraints, the verification of configuration model is automated. Only
when all the feature constraints are satisfied, is a feature configuration valid. Finally,
a user configuration file is produced, which will be used to drive the derivation of the
business process instance.

4.6 Configuration-based process derivation

Note that the target process derived by the above model transformation is just a skeleton
of service composition framework consisting of a set of key activities and their hierarchy
(i.e., sequence, parallel or variation relationships). More details have to be added, such
as binding concrete services to the invoke activities, adding link activities in the desired
order, and adding the namespace of involved services. These tasks become easy with the
aid of VxBPEL Designer. At this phase, the execution engine, such as VxBPEL ODE
or VxBPELEngine, can be used to deploy the VxBPEL specification and derive the
process instance according to the given user configuration file. More details on process
derivation based on the user configuration file can be found in Sun et al. (2018).

98 C-a. Sun et al.

5 Prototype tool

A prototype tool has been developed to further support the proposed approach. There are
two main components, one for feature modelling called SCFeatureModel and the other
for feature-driven service composition called FM2VxBPEL. We first give an overview
of the prototype, and then discuss features of the two components, respectively.

5.1 Overview of the prototype

Figure 11 shows an overview of the prototype. The components SCFeatureModel and
VxBPEL Designer (Sun et al., 2019a) are implemented as plug-ins of Eclipse, whereas
the components FM2VxBPEL and VxBPEL ODE (Sun et al., 2014) are implemented
as stand-alone Java applications. The SCFeatureModel provides visualisation for feature
modelling, and the constructed feature model is persistently stored in an XMI file.
The FM2VxBPEL is used to perform the model transformation as well as the feature
customisation based on the feature configuration. The target abstract service composition
model needs to be further completed with the VxBPEL Designer to obtain the executable
variability-based business process. At run-time, the execution engine VxBPEL ODE
will derive the specific process instance according to the user configuration of the
feature model. We further examine SCFeatureModel and FM2VxBPEL in the following
subsections.

Figure 11 Overview of the prototype

5.2 SCFeatureModel

The SCFeatureModel is used to construct the feature model. The domain analyst first
analyses the common and variable requirements and their relations in a domain, and then
use the SCFeatureModel to establish the feature model instance for a specific domain.
Figure 12 illustrates the feature model and its constraints for the car assembly domain
with a screenshot of the SCFeatureModel component. The feature model is persistently
stored following the XMI schema which can be viewed through this component.

A feature-driven variability-enabled approach 99

Figure 12 Feature model of car assembly using SCFeatureModel (see online version
for colours)

5.3 FM2VxBPEL

The main functionality of FM2VxBPEL is model transformation. In addition, the
component also supports visual customisation of feature models, generation of user
configuration files, and deployment and execution of business process instances.
FM2VxBPEL consists of five modules containing feature model management,
requirements configuration, business process management, business process execution,
and execution engine. Each of the modules is discussed below.

1 Feature model management is responsible for the management of the feature
model. It has the following three components:

• Feature model visualisation: The XMI file of the feature model is parsed
using dom4j into a feature model diagram for visualised representation.

• Configurable feature tree construction: The feature model tree is constructed
by parsing the XMI file of the feature model and organising the features with
the JTree technique. It is configurable by the users with the aim to meet
diverse user requirements.

• Model transformation: This component is the core of the FM2VxBPEL,
which can transform the feature model to the abstract service composition
model following the predefined transformation rules.

100 C-a. Sun et al.

2 Requirements configuration supports the customisation of the feature model
according to the requirements of different users. It has the following three
components:

• Visualised feature configuration: By configuring the optional features of the
feature model, users can customise the feature model in accordance with their
specific requirements.

• User configuration verification: The user configuration is automatically
verified to determine whether or not it satisfies the constraints between the
features. The user configuration file is created only when all constraints
defined are satisfied.

• User configuration file creation: The user configuration file contains the
configuration of variation points and variants corresponding to the
configuration of feature model. It is stored in the XMI format.

3 Business process management is responsible for the management of business
processes. It has the following four components:

• Deployment and undeployment: This component is implemented by reusing
the process management interface provided by Apache ODE to support the
deployment and undeployment of business processes.

• Operation log query: The process manager can look up the deployment and
execution log.

• Process tree creation: This component parses the business process file and
creates the process tree.

• Process instances derivation: At run-time, the engine VxBPEL ODE will
parse the user configuration file, and derive the process instance based on the
configuration of variation points and variants in the user configuration file.

4 Business process execution is a simulation of a SOAP client. A SOAP message
template is created by parsing the WSDL file using dom4j to get the address,
namespace, operation names and request messages of the service. It can create the
SOAP request message based on the request parameters provided by users and
return the execution results to users.

5 Execution engine provides an interface for the startup and shutdown of the
execution engine VxBPEL ODE.

6 Case study

In this section, we report on a case study where the car assembly scenario introduced
in Section 2 is used for evaluation. There are threefold reasons for this arrangement:

1 It is a typical scenario manifesting variable requirements, which is well
investigated and thus easily understood.

A feature-driven variability-enabled approach 101

2 It normally employs product family techniques for design and thus domain
analysis applies.

3 The WS-BPEL service composition implementation is available in previous
studies, which saves the effort required for the experimental evaluation in this
study.

Through the case study, we hope to answer the following questions:

1 Can the proposed approach cover typical types of requirement variability?

2 Can the proposed approach respond to varying requirements easily and efficiently?

3 What is the performance cost of the proposed approach?

To answer the first two questions, we demonstrate the application of the proposed
approach and report our observations, while for the third question, we evaluate the time
cost for variability-related processing and the execution of business process. Next, we
first report the application of the proposed approach and observations, then evaluate the
performance cost, and finally conclude the case study with some further remarks.

6.1 Application of the proposed approach and observations

We apply the proposed approach to the car assembly scenario and demonstrate the main
artefacts in a step-wise manner as follows.

6.1.1 Feature model

Domain requirements for the car assembly scenario have been analysed in Section 2.
For demonstration purpose, we assume the following constraints in this scenario:

a If the ‘white colour’ for ‘body’ is chosen, the ‘manual’ transmission system must
be chosen at the same time.

b If the ‘black colour’ for ‘body’ is chosen, the ‘tiptronic’ transmission system
cannot be chosen.

The SCFeatureModel component of the prototype presented in Subsection 5.2 is
employed to model the features of this scenario, and the resulting feature model, as
shown in Figure 13, represents commonalities and variations of requirements as well as
their relations.

The feature model provides an intuitive representation for the requirements of the car
assembly system. ‘Carbody’, ‘CarEngine’, ‘Chassis’, and ‘DriveSystem’ are common
and essential for a car, and thus expressed as mandatory features. ‘Skylight’ is an
optional feature that can be customised by users. The ‘DriveSystem’ is decomposed
into three sub-features, i.e., ‘Cluth’, ‘Transmission’, and ‘Driveaxle’. ‘Carbody’ has a
characterisation relation with its child features, and all its child features are mandatory.
‘Colour’ can be specialised by any of the features ‘grey’, ‘white’, or ‘black’, while
‘transmission’ is specialised by any of ‘manual’, ‘tiptronic’, or ‘automatic’. Moreover,
there exist two groups of constraints corresponding to our assumptions. The require

102 C-a. Sun et al.

constraint means that the ‘manual’ feature must be chosen in case the ‘white’ feature is
chosen. The simultaneous selection of the ‘black’ and ‘tiptronic’ feature is not permitted
due to the exclude constraint between these two features. In addition, the exclude
constraints exist mutually between the optional sub-features of the ‘colour’ feature and
the ‘transmission’ feature, respectively, while these constraints are omitted for simplicity
in Figure 13.

Figure 13 Feature model of the car assembly system

Drive
System

Color Material

Gray Black

Clutch

Manual TiptronicWhite

CarEngine Chassis Skylight

Transmi-
ssion Driveaxle

Automatic

Carbody
Type

CarAssemble

Carbody

Mandatory Feature

Optional Feature

Decomposition

Characterization

Specialization

Require

Exclude

6.1.2 Abstract service composition

The feature model is then used for deriving an abstract service composition according
to the transformation rules. The FM2VxBPEL component of the prototype presented
in Subsection 5.3 is employed to perform the transformation process. Specifically,
‘CarEngine’, ‘Chassis’ and other mandatory leaf features are mapped onto invoke
activities. ‘Colour’ is mapped onto a variation point, and the three optional colour
schemes (i.e., ‘grey’, ‘white’ and ‘black’) are mapped onto variants under the variation
point ‘colour’. In addition, the optional feature ‘skylight’ is mapped onto a variation
point, and only one variant named ‘Skylight v’ is associated.

The resulting abstract service composition model is a skeleton of the business
process framework, which mainly consists of necessary activities such as sequence,
invoke and variation activities. We further employ VxBPEL Designer to add
implementation details. Accordingly, the flowchart of the executable variable business
process is shown in Figure 14. For instance, there are three variants for the variation
point ‘colour’, namely ‘grey’, ‘white’, and ‘black’, and its implementation based on
VxBPEL is demonstrated in Figure 15.

From the artefacts illustrated above, one can observe that the traceability of
variations at the phase of requirement analysis and service composition implementation
is well supported due to the transformation process. On one hand, each feature in the
feature model corresponding to domain requirements is transformed to an activity in
the resulting business process. On the other hand, the commonalities and variations of
requirements are also reflected by variability constructs in the resulting business process.

A feature-driven variability-enabled approach 103

Figure 14 Flowchart of variable business process of the car assembly (see online version
for colours)

expand

expand

expand

expand

Sequence

Invoke

Variation Point

Variants

Variant

6.1.3 Feature configuration model

The feature configuration is used to represent varying user preferences for a car
composition, which is done with the aid of FM2VxBPEL. The feature configuration is
customised by the activation of optional features.

As an illustration, we assume that the user wants to compose a car with the white
colour, a manual transmission, and a skylight. In this context, the ‘white’, ‘manual’
and ‘skylight’ features are selected in the feature configuration. Then, a verification
process happens before such a feature configuration is activated. Obviously, this feature
configuration is valid since it conforms to the require and exclude constraints in the car
assembly. Next, the feature configuration is used to guide the variation configuration
of the abstract service composition, namely ‘white’, ‘manual’ and ‘Skylight v’ variants
are to be selected together in the expected business process. Accordingly, a user
configuration file is produced as shown in Figure 16.

104 C-a. Sun et al.

Figure 15 VxBPEL code segment of the variation point ‘colour’

Color

WhiteGray Black

feature Color

VxBPEL Code

<vxbpel:VariationPoint name="Color">
<vxbpel:Variants>
<vxbpel:Variant name="Gray">
<bpel:sequence name="Color_Gray">

<invoke name="Gray"></invoke>
···

</bpel:sequence>
</vxbpel:Variant>

<vxbpel:Variant name="White">
<bpel:sequence name="Color_White">

<invoke name="White"></invoke>
···

</bpel:sequence>
</vxbpel:Variant>

<vxbpel:Variant name="Black">
<bpel:sequence name="Color_Black">

<invoke name="Black"></invoke>
···

</bpel:sequence>
</vxbpel:Variant>

</vxbpel:Variants>
</vxbpel:VariationPoint>

Figure 16 Illustration of the user configuration file

<UserConfig name="default" xmlns:vxbpel="http://vxbpel.rug.org" >
<vxbpel:VariabilityConfigurationInformation

name="VariabilityConfigurationInformation">
<vxbpel:ConfigurableVariationPoints>

<vxbpel:ConfigurableVariationPoint>
<vxbpel:Variants>
<vxbpel:Variant name="PlanA">
<vxbpel:RequiredConfiguration>
<vxbpel:VPChoices name="VPChoices">
<vxbpel:VPChoice vpname="Color" variant="White">
</vxbpel:VPChoice>
<vxbpel:VPChoice vpname="Transmission" variant="Manual">
</vxbpel:VPChoice>
<vxbpel:VPChoice vpname="Skylight" variant="Skylight_v">
</vxbpel:VPChoice>

</vxbpel:VPChoices>
</vxbpel:RequiredConfiguration>

</vxbpel:Variant>
</vxbpel:Variants>

</vxbpel:ConfigurableVariationPoint>
</vxbpel:ConfigurableVariationPoints>

</vxbpel:VariabilityConfigurationInformation>
</UserConfig>

A feature-driven variability-enabled approach 105

6.1.4 Process instance

At run-time, the VxBPEL ODE parses the user configuration file and derives the
corresponding process instance. For the given user configuration shown in Figure 16, a
process instance is derived which invokes a ‘white’ service under the ‘colour’ variation
point, a ‘manual’ service under the ‘transmission’ variation point, and a ‘Skylight v’
service under the ‘skylight’ variation point. The business process is started by a
simulated client provided by FM2VxBPEL.

Up to now, we have demonstrated the application of our approach to the car
assembly scenario. To further evaluate the adaptability of derived service compositions
using our approach, we have randomly tested eight different user requirements. Their
corresponding feature configurations and variation configurations are shown in Table 4.
All these feature configurations are valid since they follow the constraints in the feature
model of car assembly. For each variation configuration, the execution engine can derive
a target business process instance, and then dynamically execute each instance. By
analysing the log information generated during the execution, all the tested business
process instances have been executed successfully.

Observations: From the above demonstration and evaluation, we observe that the
various requirements as well as constraints of the car assembly scenario are well handled
with the proposed feature model (answer to question 1). Varying requirements can
be easily and efficiently met through the feature configuration and dynamic business
process derivation, and the variability at different phases of compositions are trackable
due to the model transformation that transfers the variability in the feature model into
the variable business process (answer to question 2).

6.2 Performance cost evaluation

To evaluate the overhead brought by the introduction of variability management,
including the customisation of feature model and the variation configuration, we
collected the execution time of business processes in accordance with each configuration
in Table 4. The evaluation was conducted on a computer possessing a quad core
processor (3.60 GHZ), a memory of 4 GB and a Windows 7 64-bit operating system.
VxBPEL ODE was used as the process engine and each process instance was started
through the simulated client of FM2VxBPEL. All user configurations were tested under
the same environment. The execution time here involves the time for business process
derivation and the time for the involved service’s invocation. Note that differences in
the execution time are mainly due to business process derivation, since the invocations
of involved services are almost the same.

Observations: From Table 4, we observe that the maximum execution time is 942 ms
(C6), while the minimum is 810 ms (C5). The performance of different business process
instances is quite similar (less than one second), indicating an acceptable performance
for the service composition derivation process (answer to question 3). In addition, the
prototype provides a very useful aid for the development and execution of service
compositions, and thus further enhances the practicability and efficiency of the proposed
approach.

106 C-a. Sun et al.

Table 4 User configurations (conf.) and corresponding execution time (T) of business
processes

Conf.
Customisation of feature Variation configuration

T (ms)model (variation points and variants)

Colour Transmission Skylight Colour Transmission Skylight

C1 Grey Manual N Grey Manual NA 887
C2 Grey Manual Y Grey Manual Skylight v 925
C3 White Manual N White Manual NA 902
C4 White Manual Y White Manual Skylight v 913
C5 Grey Tiptronic N Grey Tiptronic NA 810
C6 Grey Tiptronic Y Grey Tiptronic Skylight v 942
C7 Black Automatic N Black Automatic NA 856
C8 Black Automatic Y Black Automatic Skylight v 932

6.3 Further remarks

Through the case study, we have preliminarily evaluated the effectiveness of the
proposed approach. However, there are some threats to validity of our evaluation results.

• Expressiveness of the feature model: The demonstration of the expressive power
of our approach was limited to the various simple relations in the car assembly
scenario. In a complex scenario, a larger number of features and complex relations
between features could be involved. The number of features has no significant
impact on the expressiveness of the feature model since they can be reduced to
mandatory and optional ones. Currently, our model supports five kinds of
relations between features, which could be inadequate in a sophisticated situation.
However, complex relations can be reduced to the combinations of those defined
in our approach, although it may incur an increase in complexity of the resulting
model. In this context, the feature model can be further improved if needed.

• Representativeness of the subject scenario: The proposed approach was evaluated
through a representative scenario from the car assembly domain. Ideally, the
evaluation results would be more general if more scenarios are used. However, it
is hard to evaluate a software development methodology, because real-life and
complex business scenarios are not always on hand. Especially, the requirements
analysis and business process implementations are not publicly accessible due to
commercial reason. In this context, the evaluation reported mainly serves for the
demonstration purpose, which already covered the essentials of the proposed
approach, including representing the variabilities of requirements and the
adaptation process of variable service compositions.

• Performance of business process: The performance evaluation results were
measured by the execution time of business process aiming to demonstrate the
feasibility of the proposed approach. Obviously, the results mainly depend on the
complexity of involved business processes. Furthermore, we have repeated the
experiments to make them as reliable as possible.

A feature-driven variability-enabled approach 107

7 Related work

In recent years, many efforts have been made to address the adaptability issue of service
compositions (Razian et al., 2022). We first introduce adaptive service composition
approaches based on variability management, which are closely related to our work in
this paper. Then, we introduce several representative approaches based on AI techniques.

7.1 Adaptive service compositions based on variability management

This line of work focuses on handling the variability of service compositions in
different ways (Rosa et al., 2017). Firstly, one group of works explore the variability of
service compositions through feature modelling and configuration. Typically, this kind
of methods use a feature model to represent requirement’s variability, and derive service
composition implementations from different feature configurations. Nguyen et al. (2016)
proposed a feature-based framework to develop and provide customisable web services.
In their method, a feature model is used to represent variability in user requirements, and
different requirements are satisfied by mapping the feature selection to the annotation in
the service interface. Similarly, Alférez et al. (2014) used a feature model to represent
variable service features, and at runtime, a feature configuration is trigged and then
transferred to the WS-BPEL service composition by adding or removing code fragments.
Similar to these approaches, our approach also derives the implementation of service
compositions from a feature model. The difference is that our approach employs an
abstract service composition model to build a bridge between the feature model and
implementation, which enables the traceability of variations at different phases.

Secondly, another group of works employ BPMN to model the variations of
business processes. Mazzara et al. (2012) proposed a BPMN-based reconfigurable
service composition approach, in which BPMN is used to model the business process
with reconfigurable elements and mapping rules are then provided to derive the service
composition from the BPMN model. Specifically, a reconfiguration-related activity of
BPMN is mapped to a pick activity of WS-BPEL, and the reconfiguration regions of
BPMN are mapped to scopes associated with event or termination handlers of WS-BPEL
for further reconfiguration. Similarly, Terenciani et al. (2015) extended BPMN to
support reconfigurations of service compositions by providing variability constructs such
as variation points and variants. These approaches only focus on the adaptability of
design and implementation phases, while our approach considers the full life-cycle
adaptability.

Thirdly, some efforts address the adaptation issue of service compositions by
providing or extending service composition languages, such as WS-BPEL. For instance,
BPEL‘n’Aspects (Karastoyanova and Leymann, 2009) enables the dynamic adaptation
of service compositions by extending WS-BPEL, in which advices are web service
operations, aspects are defined as policies, and attached to WS-BPEL processes by
means of WS-policy attachments mechanism, thus the adaptation can be achieved
without any modifications to the original service composition. SABPEL (Cherif et al.,
2015) is another extension of WS-BPEL. It defines context policies within WS-BPEL to
enable the creation of adaptable service compositions. When a context event is detected,
the corresponding adaptation policies are triggered to make dynamic adjustments. In our
previous work (Koning et al., 2009), we proposed VxBPEL by extending WS-BPEL
with a set of variability constructs to support explicit variability implementation of

108 C-a. Sun et al.

service compositions. In this study, VxBPEL has been adopted as the abstract service
composition model to further enable the traceability between variable elements from
requirements to implementation.

Finally, UML diagrams are used to model and manage the variability of service
compositions at the architecture level. In our previous work (Sun et al., 2010),
we proposed a UML profile for modelling the architectural variability of service
compositions. With the modelled architectural variability, a process was further provided
to manage run-time variability of the resulted VxBPEL-based service compositions. He
et al. (2015) explored the architectural variability modelling of service compositions
from a different perspective, and extended UML with variability elements which are then
transformed to variation points and variants of VxBPEL. This study further advances
the variability modelling to the requirement analysis phase and service compositions are
automatically derived in a model-driven way, which significantly contributes to a more
comprehensive VxBPEL-based adaptive service composition framework.

7.2 Adaptive service compositions based on AI techniques

Researchers increasingly explore popular AI techniques to address the adaptability issue
of service compositions. Among them, AI planning based techniques transform service
compositions to an automatic planning problem, namely finding a reachable service
composition path from the initial state to the target state. For example, Bashari et al.
(2018) formalised the service composition problem using a planning domain definition
language (PDDL), and utilised AI planning to automatically generate a path that meet
the requirements. The derived path was further converted into WS-BPEL code for
execution. Rodriguez-Mier et al. (2015) used a graph-based framework for automatic
service compositions, where a service relationship graph was first built based on the
semantic matching of service input and output parameters, and a forward/backward
graph search algorithm was then used to find the best service composition path with the
least number of services.

Evolutionary algorithms-based techniques treat service compositions as a
multi-objective optimisation problem and employ evolutionary algorithms to find
the optimal service from available services. Specifically, various QoS properties are
set as the optimisation objectives, such as response time, throughput, cost, and
energy consumption. Sun et al. (2019) incorporated spatio-temporal constraints and
energy consumption of services into the composition process, and used particle
swarm optimisation algorithm to generate the optimal service composition. Sefati and
Navimipour (2021) realised QoS-aware service compositions by integrating the ant
colony optimisation algorithm with the hidden Markov model. Deng et al. (2017) first
defined the energy consumption calculation model of services, and then used genetic
algorithm to select services aiming to optimise the energy consumption.

Reinforcement learning based techniques model the service composition using
Markov decision process (MDP) and learn the optimal service composition by
maximising the cumulative reward. For instance, Ren et al. (2017) utilised Q-learning
to generate the optimal service selection that satisfies QoS constraints; Yi et al. (2022)
developed a deep reinforcement learning framework to achieve QoS-aware adaptability
of service compositions; Liang et al. (2021) integrated the deep reinforcement learning
with priority replay mechanism to achieve efficient service compositions.

A feature-driven variability-enabled approach 109

In summary, the above approaches mainly focus on searching an optimal
composition path or service selection solution from the perspective of optimisation,
without paying attention to the concrete design and implementation of service
compositions. Different from these approaches, our approach achieves the adaptability
of service compositions from the perspective of variability management, considering
practical development of adaptive service compositions.

8 Conclusions

We have proposed a feature-driven variability-enabled adaptive service composition
approach, with the purpose of managing the full life-cycle variability of service
compositions. The approach focuses on addressing the variability issue in requirements
analysis, and utilises the feature model to automatically drive variability-enabled
adaptive service compositions, aiming to deal with requirement changes more
efficiently and systematically. This study advances the variability-based adaptive service
compositions in the following aspects:

1 Feature model is adapted to the service composition domain for requirements
modelling. It provides an intuitive and visualised representation for domain
requirements, which enhances the comprehensibility of requirements for both the
domain analyst and the process designer.

2 The MDD technique is adopted to automate the adaptive service composition
process. The variability in requirements can be automatically transferred to the
process implementation through model transformation, meanwhile the traceability
between domain requirements and business process is persisted.

3 A prototype has been developed to visualise the modelling and configuration
processes. A case study has been conducted to validated the feasibility and
effectiveness of the proposed approach.

For future work, we plan to enrich the feature model to support more types of
constraints between features. We also expect to conduct empirical studies to further
comprehensively evaluate our approach with diverse business scenarios from more
application domains, such as IT-related domains.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant
Nos. 61872039 and 62272037), the Fundamental Research Funds for the Central
Universities (Grant No. FRF-GF-19-B19), and the Open Research Fund Program of
Beijing Key Laboratory on Integration and Analysis of Large-scale Stream Data (Grant
No. 220190804).

110 C-a. Sun et al.

References

Alférez, G.H., Pelechano, V., Mazo, R., Salinesi, C. and Diaz, D. (2014) ‘Dynamic adaptation
of service compositions with variability models’, Journal of Systems and Software, Vol 91,
pp.24–47.

Arcaini, P., Inverso, O. and Trubiani, C. (2020) ‘Automated model-based performance analysis
of software product lines under uncertainty’, Information and Software Technology, Vol. 127,
pp.1–54.

Backus, J.W., Bauer, F.L., Green, J., Katz, C., McCarthy, J., Naur, P., Perlis, A.J., Rutishauser, H.,
Samelson, K., Vauquois, B., Wegstein, J.H., van Wijngaarden, A. and Woodger, M. (1963)
‘Revised report on the algorithmic language Algol 60’, The Computer Journal, Vol. 5, No. 4,
pp.349–367.

Bai, J., Xiao, H., Yang, X. and Zhang, G. (2009) ‘Study on integration technologies of building
automation systems based on Web services’, Proceedings of the 2009 International Colloquium
on Computing, Communication, Control, and Management, IEEE, Piscataway, Sanya, China,
Vol. 4, pp.262–266.

Bashari, M., Bagheri, E. and Du, W. (2018) ‘Automated composition and optimization of services for
variability-intensive domains’, Journal of Systems and Software, Vol. 146, pp.356–376.

Benavides, D., Segura, S. and Ruiz-Cort́es, A. (2010) ‘Automated analysis of feature models 20 years
later: a literature review’, Information Systems, Vol. 35, No. 6, pp.615–636.

Budinsky, F., Steinberg, D., Ellersick, R., Grose, T.J. and Merks, E. (2004) Eclipse Modeling
Framework: A Developer’s Guide, Addison-Wesley Professional, Boston.

Cherif, S., Djemaa, R.B. and Amous, I. (2015) ‘SABPEL: creating self-adaptive business processes’,
Proceedings of the 14th IEEE/ACIS International Conference on Computer and Information
Science, IEEE, Piscataway, Las Vegas, NV, pp.619–626.

Czarnecki, K. and Helsen, S. (2006) ‘Feature-based survey of model transformation approaches’, IBM
Systems Journal, Vol. 45, No. 3, pp.621–645.

Deng, S., Wu, H., Tan, W., Xiang, Z. and Wu, Z. (2017) ‘Mobile service selection for composition:
an energy consumption perspective’, IEEE Transactions on Automation Science and Engineering,
Vol. 14, No. 3, pp.1478–1490.

Ezenwoye, O. and Sadjadi, S.M. (2007) ‘TRAP/BPEL: a framework for dynamic adaptation of
composite services’, Proceedings of the 3rd International Conference on Web Information
Systems and Technologies, Springer, Berlin, Barcelona, Spain, pp.216–221.

Gharineiat, A., Bouguettaya, A. and Ba-hutair, M.N. (2021) ‘A deep reinforcement learning
approach for composing moving IoT services’, IEEE Transactions on Services Computing,
DOI: 10.1109/TSC.2021.3064329.

He, X., Fu, Y., Sun, C-A., Ma, Z. and Shao, W. (2015) ‘Towards model-driven variability-based
flexible service compositions’, Proceedings of the 39th IEEE Annual International Computers,
Software & Applications Conference, IEEE Computer Society, Los Alamitos, CA, Taichung,
Taiwan, pp.298–303.

Jamie, P.D. (2022) How Automotive Production Lines Work [online] https://auto.howstuffworks.com/
car.htm (accessed 20 November 2021).

Karastoyanova, D. and Leymann, F. (2009) ‘BPEL‘n’Aspects: adapting service orchestration logic’,
Proceedings of the 7th IEEE International Conference on Web Services, IEEE Computer Society,
Los Alamitos, CA, Los Angeles, CA, pp.222–229.

Koning, M., Sun, C-A., Sinnema, M. and Avgeriou, P. (2009) ‘VxBPEL: supporting variability for
web services in BPEL’, Information and Software Technology, Vol. 51, No. 2, pp.258–269.

Krishnamurty, V., Natarajan, R. and Babu, C. (2013) ‘Monitoring and reconfiguring the services in
service oriented system using AOBPEL’, Proceedings of the 2013 International Conference on
Recent Trends in Information Technology, IEEE, Piscataway, Chennai, India, pp.423–428.

A feature-driven variability-enabled approach 111

Lemos, A.L., Daniel, F. and Benatallah, B. (2015) ‘Web service composition: a survey of techniques
and tools’, ACM Computing Surveys, Vol. 48, No. 3, pp.1–41.

Lian, X., Zhang, L., Jiang, J. and Goss, W. (2018) ‘An approach for optimized feature selection in
large-scale software product lines’, Journal of Systems and Software, Vol. 137, pp.636–651.

Liang, H.,Wen, X., Liu, Y., Zhang, H., Zhang, L. and Wang, L. (2021) ‘Logistics-involved QoS-aware
service composition in cloud manufacturing with deep reinforcement learning’, Robotics and
Computer-Integrated Manufacturing, Vol. 67, p.101991.

Mazzara, M., Dragoni, N. and Zhou, M. (2012) Implementing Workflow Reconfiguration in WS-BPEL,
Technical Report, Newcastle University, UK.

Narwane, G.K., Galindo, J.A., Krishna, S.N., Benavides, D., Millo, J-V. and Ramesh, S. (2016)
‘Traceability analyses between features and assets in software product lines’, Entropy, Vol. 18,
No. 8, pp.1–31.

Nguyen, T., Colman, A. and Han, J. (2016) ‘A feature-based framework for developing and
provisioning customizable web services’, IEEE Transactions on Services Computing, Vol. 9,
No. 4, pp.496–510.

Peltz, C. (2003) Web Services Orchestration: A Review of Emerging Technologies, Tools and
Standards, Technical Report, Hewlett-Packard Company.

Razian, M., Fathian, M., Bahsoon, R., Toosi, A.N. and Buyya, R. (2022) ‘Service composition
in dynamic environments: a systematic review and future directions’, Journal of Systems and
Software, Vol. 188, p.111290.

Ren, L., Wang, W. and Xu, H. (2017) ‘A reinforcement learning method for constraintsatisfied services
composition’, IEEE Transactions on Services Computing, Vol. 13, No. 5, pp.786–800.

Rodriguez-Mier, P., Pedrinaci, C., Lama, M. and Mucientes, M. (2015) ‘An integrated semantic
web service discovery and composition framework’, IEEE Transactions on Services Computing,
Vol. 9, No. 4, pp.537–550.

Rosa, M.L., Aalst, W.M.V.D., Dumas, M. and Milani, F.P. (2017) ‘Business process variability
modeling: a survey’, ACM Computing Surveys, Vol. 50, No. 1, pp.1–45.

Sebastían, G., Gallud, J.A. and Tesoriero, R. (2020) ‘Code generation using model driven architecture:
a systematic mapping study’, Journal of Computer Languages, Vol. 56, pp.1–11.

Sefati, S. and Navimipour, N.J. (2021) ‘A QoS-aware service composition mechanism in the internet
of things using a hidden-markov-model-based optimization algorithm’, IEEE Internet of Things
Journal, Vol. 8, No. 20, pp.15620–15627.

Sun, C-A., Rossing, R., Sinnema, M., Bulanov, P. and Aiello, M. (2010) ‘Modeling and managing
variability of web service-based systems’, Journal of Systems and Software, Vol. 83, No. 3,
pp.502–516.

Sun, C-A., Wang, P., Zhang, X. and Aiello, M. (2014) ‘VxBPEL ODE: a variability enhanced service
composition engine’, Proceedings of APWeb 2014 Workshops, LNCS 8710, Springer, Cham,
Changsha, China, pp.69–81.

Sun, C-A., Wang, Z., Wang, K., Xue, T. and Aiello, M. (2019a) ‘Adaptive BPEL service compositions
via variability management: a methodology and supporting platform’, International Journal of
Web Serivices Research, Vol. 16, No. 1, pp.37–69.

Sun, M., Zhou, Z., Wang, J., Du, C. and Gaaloul, W. (2019b) ‘Energy-efficient IoT service
composition for concurrent timed applications’, Future Generation Computer Systems, Vol. 100,
pp.1017–1030.

Sun, C-A., Xue, T. and Hu, C. (2013) ‘VxBPELEngine: a change-driven adaptive service composition
engine’, Chinese Journal of Computers, Vol. 36, No. 12, pp.2441–2454.

Sun, C-A., Zhang, Z. and Zhang, X. (2018) ‘A variation model-based reusable and customizable SaaS
development approach’, Chinese Journal of Software, Vol. 29, pp.3435–3454.

112 C-a. Sun et al.

Terenciani, M., Paiva, D.M.B., Landre, G. and Cagnin, M.I. (2015) ‘BPMN* – a notation
for representation of variability in business process towards supporting business process
line modeling’, Proceedings of the 27th International Conference on Software Engineering
and Knowledge Engineering, Wyndham Pittsburgh University Center, USA, Pittsburgh, USA,
pp.227–230.

Urbieta, A., González-Beltŕan, A., Mokhtar, S.B., Hossain, M.A. and Capra, L. (2017) ‘Adaptive
and context-aware service composition for IoT-based smart cities’, Future Generation Computer
Systems, Vol. 76, pp.262–274.

Valderas, P., Torres, V. and Serral, E. (2022) ‘Modelling and executing IoT-enhanced business
processes through BPMN and microservices’, Journal of Systems and Software, Vol. 184,
p.111139.

Wang, H., Hu, X., Yu, Q., Gu, M., Zhao, W., Yan, J. and Hong, T. (2020) ‘Integrating reinforcement
learning and skyline computing for adaptive service composition’, Information Sciences, Vol. 519,
pp.141–160.

Xiao, Z., Cao, D., You, C. and Mei, H. (2011) ‘Towards a constraint-based framework for dynamic
business process adaptation’, Proceedings of the 8th IEEE International Conference on Services
Computing, IEEE Computer Society, Los Alamitos, CA, Washington, DC, USA, pp.685–692.

Yi, K., Yang, J., Wang, S., Zhang, Z. and Ren, X. (2022) ‘PPDRL: a pretraining-and-policy-based
deep reinforcement learning approach for QoS-aware service composition’, Security and
Communication Networks, p.8264423.

Yu, W., Zhao, H., Zhang, W. and Jin, Z. (2016) ‘A survey of the feature model based approaches to
automated product derivation’, Chinese Journal of Software, Vol. 27, No. 1, pp.26–44.

