
   

  

   

   
 

   

   

 

   

   304 Int. J. Smart Technology and Learning, Vol. 2, No. 4, 2021    
  

   Copyright © 2021 Inderscience Enterprises Ltd. 
 

   

   
 

   

   

 

   

       
 

Integrating deep learning to improve text 
understanding in conversation-based ITS 

Sheng Xu 
Central China Normal University, 
Wuhan, China 
Email: psyxusheng@mails.ccnu.edu.cn 

Frank Andrasik 
Department of Psychology,  
University of Memphis,  
Memphis, TN 38152, USA 
Email: fndrasik@memphis.edu 

Zhiqiang Cai 
University of Wisconsin – Madison, 
Wisconsin, USA 
Email: zhiqiang.cai@wisc.edu 

Xiangen Hu* 
Department of Psychology,  
The University of Memphis,  
Memphis, TN 38152, USA 
Email: xhu@memphis.edu 
*Corresponding author 

Abstract: In Conversation-based intelligent tutoring systems (CbITS), 
assessing learners’ natural language input is a key factor for the system to be 
effective. When using AutoTutor, a well-known CbITS, assessments of this 
type are reduced to evaluating the semantic similarity between learners’ inputs 
and pre-set expectations/misconceptions. Traditional semantic representation 
methods have prominent inherent limitations, while more advanced deep 
learning models require large amounts of labelled data which is expensive to 
obtain. We contend that using deep learning models in concert with an active 
learning training procedure can reduce the demand for labelled data, thus 
improving the effectiveness of natural language understanding in CbITS. We 
report findings from a series of experiments that document how our proposed 
model was able to significantly outperform traditional models with much fewer 
labelled data. These findings thus illustrate both the possibility and potential 
benefits that can be accrued by utilising more advanced semantic 
representation models. 

Keywords: conversation-based ITS; semantic; deep learning; active learning; 
pretrained language model. 
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1 Introduction 

Over the past three decades, research in intelligent tutoring systems (ITS) has made great 
progress, particularly so for those regarded as tutorial dialogue systems (a special kind of 
ITS that tutors students by imitating the conversational behaviour of human tutors). At 
present, many excellent ITSs have been developed and applied in a range of domains, 
with impressive outcomes achieved. Prominent examples include Cognitive Tutor in k12 
math (Ritter et al., 2007), CIRCSIM-Tutor in Physiology (Evens et al., 2002), and 
ITSPOKE in conceptual mechanics (Litman and Silliman, 2004) AutoTutor has been 
applied in the domains of computer literacy (Graesser et al., 2003, 2004), conceptual 
physics (Matthews et al., 2010), biology (Graesser et al. 2012), and critical thinking 
(Halpern et al., 2012; Millis et al., 2011). Rigorous evaluations have shown that these 
ITSs have greatly enhanced learning outcomes and, in some cases, the learning gains 
have been found to be comparable to those obtained with a human tutor (Vanlehn, 2011). 
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Understanding a student’s natural language input is a key factor for enabling tutorial 
dialogue systems to be effective. For example, Rosé and Vanlehn (2005) pointed out that 
the natural language understanding approaches used thus far in ITSs fall into two 
categories: (1) shallow approaches that capture the surface semantic feature of student’s 
input, for example pattern matching (Glass, 2001) and  the “bag-of words” model, such 
as latent semantic analysis (Dumais, 2013) in Graesser et al. (2004); and (2) deep 
approaches, which capture deep semantic features, that are usually captured by 
converting natural language into some kind of logic form, for example semantic parsing 
in Aleven and Popescu (2003) and Dzikovska et al. (2010). Thus, deep approaches can 
support evaluations that are more fine-grained and involve more complex semantic 
relationships. For example, if a student says, “A causes B”, then an ITS that employs 
deep approaches is capable of recognising when a student misunderstands the causality 
relationship between A and B, which cannot be recognised by an ITS that is based on 
shallow approaches (Kalliopi-Irini and Robertson, 2002). 

Despite the above shortcomings, shallow approaches are still valuable in tutorial 
dialogue systems, chiefly for the following reasons: 1) as shallow approaches are much 
easier to build and can provide good performance overall, they may serve as a fallback 
plan when initial attempts at applying deep approaches fail, such as in Rosé and Vanlehn 
(2005); 2) the learning domain is ill-defined so that it is difficult to build a deep natural 
language understander; and 3) most languages do not have the parsers, semantic bases, 
and knowledge bases needed to construct deep semantic understanders, which leaves 
shallow approaches as the only viable choice. 

Latent semantic analysis (LSA) has been one of the most widely used shallow 
approaches in the field of tutorial dialogue systems. Compared with the pattern matching 
method for analysing local information (usually a few words in length), LSA is more 
often used to evaluate sentence and even paragraph-level answers as a whole. An 
example might involve determining whether the input belongs to a specific expected 
answer / expected typical error, as in AutoTutor, a well-known tutorial dialogue system 
(Person et al., 2001). The dialogue mechanism of AutoTutor is expectation- and 
misconception-tailored (EMT) based (Graesser et al., 2005). In EMT, a long ideal answer 
to a deep level question is decomposed into a set of expectations, each representing a 
specific aspect of the ideal answer. Typical misconceptions to the question are also 
anticipated. During tutoring, answers provided by a student are constantly compared with 
those expectations/misconceptions, so that at each step of tutoring, feedback and 
subsequent steps are adaptively determined based on what expectation/misconceptions 
are covered by a student. LSA represents a text’s semantic value (using real-valued 
vectors) and computes a texts’ semantic similarity (with cosine value) in a way that is 
relatively simple and effective, with no need for labeled data or supervision (or what is 
commonly termed “unsupervised machine learning”; Barlow, 1989). However, LSA 
lacks the ability to represent complex and fine because it ignores word order information 
(Hu et al., 2007). 

Rapid developments in the field of natural language processing over the past decade 
have greatly improved performance in semantic representation, especially so for the 
progress of deep learning. It is, therefore, natural to consider replacing LSA with more 
advanced semantic representation models in order to further improvements. Although 
such efforts are worthy, they are quite costly, as most of the advanced models are 
supervised, which requires large amounts of labelled data (as previously discussed). 
Further, when a specific CbITS application is applied in an ill-defined domain where 
large, labelled data are not always available, this type of approach is simply not feasible. 
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Training complex models while using the least amount of labelled data is a frontier 
challenge in the machine learning/deep learning community, with various methods being 
explored. Active learning (AL) (Settles, 2009, details later) is one promising method that 
is increasingly attracting attention. Studies have confirmed that the AL method is 
beneficial for reducing the dependence on labelled data. However, datasets used in 
studies conducted to date often either 1) contain only a few semantic categories, such as 
positive/negative (for example, the movie reviews dataset by Pang and Lee, 2004); or 2) 
have been constructed for a general purpose in which the difference between semantic 
categories is relatively large (such as 20 Newsgroups, n.d.). In a learning context, an ideal 
answer to a deep level question may contain more aspects than simply positive, negative, 
or neutral. Further, as learning is highly domain-specific, those aspects may be much 
harder to distinguish. Theoretically speaking, two main problems when using deep 
learning models instead of current semantic model (LSA-based) used in AutoTutor can 
be solved by using an active learning training procedure, which addresses the problem 
that insufficient labelled training data lead to poor performance of models). Additionally, 
a deep learning model itself could provide better semantic representation of texts to 
distinguish domain specific sentences. In this paper, we describe our approach to 
addressing the limitations noted earlier. Specifically, we review one that combines a deep 
learning model with active learning training in order to improve text understanding 
performance. Our goal is to improve the performance of text assessment, while at the 
same time using the least amount of labelled data necessary. The most appropriate 
application of our method is to enhance natural language evaluation in CbITS for ill-
defined domains. To our knowledge, this is the first time this array of techniques has 
been applied to CbITS. 

2 Related works 

2.1 Text matching models	

When using an EMT framework, understanding a student’s natural language input in a 
CbITS basically involves determining which input text is best characterised as a pre-set 
expectation or misconception. This is a typical text classification problem, which 
involves assigning labels or categories to text according to its content. The key to 
effective text classification is to better represent the semantics of the text. Several 
promising approaches have been proposed to better represent a text’s semantic meaning, 
which in general fall into one of three methods. The first is known as the word 
embedding method, with examples being Word2vec (Mikolov et al., 2013), GloVe 
(Pennington et al., 2014), and LSA, among others. These types of models seek to obtain a 
high-quality vector representation of words. In order to obtain a text’s vector, an extra 
process is needed, such as determining the average or weighted average of word vectors 
that the text contains (Arora et al., 2016; Rücklé et al., 2018). Word embedding methods 
are relatively simple and quick. However, in this approach, word order information and 
the interaction between words is ignored, which limits their ability to capture more 
precise semantics. The second method is sentence embedding, which directly models a 
sentence’s vector by utilising a deep learning structure, such as a convolutional neural 
network (Kim, 2014) or a recurrent neural network (Nowak et al., 2017) to capture local 
and global word information, respectively. 
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The third method consists of pretrained language models (Devlin et al., 2018; Peters 
et al., 2018; Radford et al., 2018), which are trained on a large-scale corpus using self-
supervised tasks so that once generic semantic information is acquired it is capable of 
being transferred to specific domains by fine-tuning in downstream tasks, which needs 
minimal data. BERT (Devlin et al., 2018), one of the most highly cited pretrained 
language models, utilises stacked transformer layers (Vaswani et al., 2017) as its basic 
neural structure and trains the model on a large-scale corpus that includes both word-
level (predicting masked words in a sentence) and sentence-level (determining if two 
sentences are in succession in an original article) unsupervised tasks. Pretrained language 
models have achieved state-of-the-art performance on multiple typical NLP tasks, such 
as that shown by Chen et al. (2019) and others (Rietzler et al., 2019; Yang et al., 2019), 
which accounts for the high level of attention BERT has enjoyed since its release. 

2.2 Active learning 

AL consists of a machine learning framework that is used to overcome the labelling 
bottleneck by asking queries to be labelled by a human annotator. The model for AL is 
A = (C, Q, S, L, U) (Settles, 2009), where C refers to a classifier, L refers to labelled data, 
U represents unlabeled data, S refers to a supervisor (where typically, the supervisor is a 
human annotator with expertise for a given domain), with Q designating the query 
strategy used for selecting appropriate samples from U. AL is a cyclical and iterative 
process. In general, C is first trained using L, which is then used to score all samples in 
U. Based on those scores and query strategy, some samples from U are taken out and 
labelled by S to be used to train an improved C. This process continues until C’s 
performance is satisfactory or certain stop criteria are met. The entire process of AL is 
shown in Figure 1. Applying AL has great potential to reduce the need for labelled data, 
as shown by the work of Miller et al. (2020). 

Figure 1 Process of active learning 

 

The most important component for AL is the query strategy, as summarised in Sun and 
Wang (2010). Uncertainty sampling, in which the active learner queries samples with the 
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least amount of certainty, is the most commonly used query strategy. The basic idea of 
uncertainty sampling is that the active learner can avoid querying identified samples and 
focus on confusing instances. Several ways exist to define a sample’s uncertainty, such as 
least confident (Hu et al., 2016) and entropy (Zhang et al., 2016). The entropy-based 
uncertainty is defined in the following formula: 

( | ; ) ( | ; )kEnt P prediction k x logP prediction k x       

where ( | ; )P prediction k x   means the probability of the model (with parameter θ) 

assigning label k to sample x. Larger obtained values indicate that the model may not be 
certain about assigning a specific label to the sentence and is therefore a better candidate 
to be labelled by human supervisors. This strategy has been used in numerous studies, 
such as those conducted by Lu and MacNamee (2020), Zhu and Hovy (2007), and Zhu et 
al. (2008). 

Researchers have long tried to use AL to help solve the problem of text classification. 
For example, consider the work of Tong and Koller (2001), who applied the Support 
vector machine (SVM). More recently, increased attention has focused on deep learning 
approaches, such as that by Zhang et al. (2016) who combined AL with a deep learning 
model (more specifically, the Convolution neural network structure) for text 
classification. An et al. (2018) compared SVM with deep learning models, such as 
f(gated recurrent unit, Chung et al., 2014) models, which are variations of recurrent 
neural networks, and found deep learning models significantly outperform traditional 
machine learning models. Finally, upon comprehensively comparing many types of text 
classification models, Lu and MacNamee (2020) found that pretrained language models 
with uncertainty sampling yielded consistently higher scores. 

3 Research questions 

A large number of studies have shown the advantages of deep learning models in 
semantic representation. It is also true that training a deep learning model is resource 
intensive and expensive (human and computing time), and insufficient training may lead 
to even worse performance. With this in mind, this paper attempts to address more 
practical questions, such as: 

 How much can the effectiveness be improved by using a pre-training language 
model + active learning? 

 What is the minimum amount of labelled training data needed to train a deep 
learning text understander that outperforms the model currently used in AutoTutor?  

By addressing these questions, this paper seeks to provide practical guidance for the 
application of deep learning to improve natural language understanding in CbITS. 
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4 Method 

4.1 Model structure 

Our model structure is a typical text classification model, which is depicted in Figure 2. It 
consists mainly of two parts: an encoder that converts text into vectors and a classifier 
that determines which semantic category best characterises the input. The encoder 
contains two sub-modules. One consists of a pretrained language model (PTLM) that 
converts text into an n  d vector, where n refers to the number of words that the text 
contains and d refers to the model’s output size. The second consists of the extra-layers 
that operate on the output of PTLM to convert the variable length n  d vector into a d-
dimensional vector. Typical extra layers could consist of a mean pooling layer or a max 
pooling layer, as detailed in Sun et al. (2019); another classic extra-layer structure 
includes a bidirectional LSTM with attention (Zhou et al., 2016) or simply just an 
attention layer alone. 

Figure 2 Model proposed. PTLM refers to a pre-trained language model 

 

More specifically, assuming a student’s input is sentence si containing n words 

 1 2, ,..., nw w w , then through PTLM, it will be converted into an n  d vector 

 PTLMn d
PTLMv R  , where dPTLM is the output dimension of PTLM. Mean-pooling and max-

pooling both operate on the first dimension of vPTLM by taking the mean value or the 
maximum value respectively, resulting in a vector 1 PTLMdv R  . Attention mechanisms in 
deep learning models can help one to focus on more important information (Bahdanau et 
al., 2014). We adopt a simple attention mechanism here for the purpose of illustration. 
Assuming a sentence is converted into a vector n dV R   by all neural layers before the 
attention layer, then the attention mechanism works as follows: 

1 Computing the weighting scores for every word this sentence contains: 
i

i att atts V W b   . Watt and batt are learnable parameters, Vi refers to the i-th row in V 

which can also be regarded as the i-th word’s embedding computed by previous 
layers.  
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2 Normalising the weighting scores using SoftMax: 
1

/i k

n
s s

i
k

a e e


  ; 

3 Applying the weighted average to obtain v: 
1

.
n

i
i

i

v a V 



  . 

So given a piece of text, the encoder converts it into a 1-dimension vector v for 
representing its semantics. Then the 1-dimension vector is sent to the classifier for 
classification. For the purpose of illustration, we use a fully connected layer. The final 

output of the model is   1 clsN
o oo Softmax W v b R     , where Ncls refers to the 

number of categories in total, while Wo, bo are the fully connected layer’s weights and 
bias. 

4.2 Active-learning training procedure 

4.2.1 Training and evaluating 

The model’s training follows the standard process of AL described in previous sections, 
including repeatedly: i) training the model using L, ii) querying the sample from U, and 
iii) annotating the queried samples and adding them to L then returning to step i, until the 
model’s performance is acceptable. In step ii, the model’s parameters are updated by a 
mini-batch gradient descent which involves sampling a mini-batch of data from L. In 
each round of AL, for each semantic category (expectation/misconception), n samples are 
queried through a sampling strategy from U. 

4.2.2 Query strategy 

We use uncertainty sampling because it is simple and effective. The model’s output is a 

vector 1 .clsNo R   The value on each dimension indicates the possibility that the input 
belongs to the corresponding semantic category. Because the output is processed by 
SoftMax, the sum of the values of dimensions is 1, so we consequently use the value of 
each dimension as the corresponding probability (belongs to corresponding semantic 
category), and we can then calculate the uncertainty of the output using the previously 

introduced formula based on entropy as: 
clsN

i i
i

u o logo   . The samples with the largest u 

values will be queried. In order to ensure the balance of the samples in each category, we 
choose the k samples with the largest u value for each category. 

5 Experiments 

5.1 Dataset 

In order to be as close to the application scenario of the model as possible, the dataset 
used in a current study should: contain multiple (more than 3) semantic categories and be 
domain specific. As most publicly available data sets do not meet these requirements, we 
built our own, medium-sized dataset. The theme for our created data set is the basic 
knowledge of diabetes. We constructed the dataset as follows: 1) “Diabetes” was the 
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keyword used to obtain relevant text content (about 4.5Mb in file size) in a well-known 
online question-and-answer community, which contains about 34k sentences. 2) Sixteen 
semantic categories related to the topic were sorted by a domain expert as shown in  
Table 1, with three typical examples given for each semantic category. This information 
was used as the initial labelled data (for starting the AL) and is considered the “gold 
standard” dataset in our experiments. 3) We then used a simple semantic similarity 
program to select the most relevant sentences for each category, manually removing 
sentences that were not relevant to the domain. This resulted in approximately 2500 
sentences. 4) These 2500 sentences were then independently classified by two domain 
experts, with each sentence placed into one of 16 semantic categories. Sentences judged 
as not belonging to any identified category were discarded. Before formally classifying 
these sentences, two domain experts tried to mark 100 sentences selected at random. 
These experts discussed their inconsistent labels, eventually formed a unified 
classification standard, and then labelled all of the sentences accordingly. The rater 
consistency (Cohen’s Kappa) coefficient between the two independent domain experts 
was 0.87 on category level and 0.73 in sub-category level, which is acceptable 
considering the large number of categories to be classified (16). After formally labelling 
the dataset, the two domain experts discussed their inconsistent labels and finally came 
up with a unified result. Finally, 2312 sentences were maintained (the gold standards not 
included). Eighty percent (80%) of the sentences were used as training data, with the 
remaining 20% used as our testing dataset. The details of the dataset are shown in  
Table 1. 

Table 1 The dataset used in the following experiments 

Category* Sub-category Number Description 

Diabetes 

Definition 149 Describes what diabetes is, should include related 
information 

Description 36 Generally mentioned diabetes as a disease 

Categories 32 Talked about different types of diabetes 

Clinical symptoms 75 Clinical manifestations of diabetes 

Epidemiological characteristics  164  

Treatment 

Hypoglycaemic 
drugs 

101 Treatment concerning hypoglycaemic drugs 

Insulin related 122 Treatment concerning Insulin drugs 

Diet related 378  

Exercise related 84  

General General 238 
Generally mentioned about treatment, but could 
not be categorised to any other sub-categories 

Cause of 
disease 

Lifestyle 98 Unhealthy lifestyle causes of diabetes 

Other diseases 78 Caused by diseases 

Heredity 73  

Harm Harm 276 Its harm to human body 

Diagnosis Diagnosis 172 Clinical diagnosis of diabetes 

Related 
metabolism 

Related metabolism 236 Metabolic processes related to blood sugar 

Note: *A sample of every category is shown in the appendix. 
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5.2 Model settings 

Having confirmed the advantages of deep learning models over traditional machine 
learning models, no further discussion of comparisons between them seems needed. 
Three models were compared: 1) A baseline model, word2vec (for converting sentences 
into vectors) + KNN (K-nearest neighbours) was used for choosing the best match 
between sentences and semantic categories, simulating the semantic matching algorithm 
currently used in AutoTutor; 2) the text classification model trained using whole training 
data as the upper limit that could be reached; and 3) the text classification model trained 
in the active learning procedure. A Chinese version of BERT was chosen as our PTLM 
(contains 11M parameters in total, the output dimension is 768). 

For the baseline model, the word2vec model was trained in a simplified Chinese 
Wikipedia dump, with a vector size of 300 f. Comparisons were also conducted to 
determine the structure of extra layers, including just mean-pooling, just max-pooling, 
and just attention layer with bidirectional LSTM + attention layer as described above. 
These key parameters are shown in Table 2. 

Table 2 Key parameters of candidates of extra layers 

Model structure Extra parameters (parameters in extra-layers) 

BERT + mean pooling None 

BERT + max pooling None 

BERT + attention Fully connected (input size 768, output size 1) 

BERT+Bi-LSTM+ attention Bi-LSTM (input size 768 output size 256) + attention  
(fully connected input size 768, output size 1) 

5.3 Results 

5.3.1 Model performance 

The most important question when using deep learning is determining the degree to 
which the chosen model yields a gain in performance. The data presented in Table 3 
indicate that the accuracy of the semantic category judgment was greatly increased by 
adopting a deep learning model. Compared to the baseline model, the best deep learning 
model performed significantly better (33% vs. 73%) with the cost of manually labelling 
about 2500 sentences as training and testing data. Further, the BERT + attention model 
produced the best results (highest f1 and accuracy score) among all candidates. In the 
remaining experiments to follow, this structure consequently was adopted as the extra 
layers of the model’s encoder. 

5.4 Effectiveness of AL 

In order to show the advantages of using the AL training model in a more intuitive 
manner, we first examined the performance of the model when each semantic category 
queries 5 samples per round (total query 5 16 80   per round). Table 4 shows that after 
10 rounds (note that only the gold standard dataset is used in the first round), the total 
number of samples entering the training is 768 (48 + 9 × 16 × 5). After training with AL, 
93% (0.68 / 0.73) of the model performance was achieved with a total of less than 42% 



   

 

   

   
 

   

   

 

   

   314 S. Xu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

(768/ (2312 × 0.8)) of the data. Figure 3 points out the performance gain after each round 
of AL and the performance difference between the baseline model and the proposed 
model trained with all training data. This suggests that a training model with an AL 
procedure continuously improved the model’s performance with a CbITS proposed 
dataset (multiple semantic categories and domain specific). Considering that this example 
included 16 categories, the probability of random guessing is only about 6.3% (even if 
one considers guessing by the category with the most samples, the probability would 
only be 16.4%), the performance of the model is intuitively quite satisfactory. 

Table 3 Model’s performance when training with whole training data. Comparisons were 
conducted among the baseline model and different extra-layers structure 

 Precision Recall f1 Accuracy 

word2vec+knn 0.333 0.370 0.285 0.334 

BERT+mean-pool 0.681 0.637 0.638 0.697 

BERT+max-pool 0.659 0.561 0.569 0.641 

BERT+attention 0.678 0.660 0.662 0.732 

BERT+bi-LSTM+attention 0.636 0.670 0.635 0.713 

Note: *Bold numbers mean maximum values. 

Table 4 Training model with AL, with each round including 5 samples per semantic category 
samples queried 

Round 1 2 3 4 5 6 7 8 9 10 

precision 0.393 0.472 0.541 0.609 0.610 0.616 0.622 0.633 0.640 0.633 

recall 0.457 0.450 0.526 0.568 0.578 0.592 0.603 0.620 0.621 0.623 

f1 0.390 0.422 0.503 0.558 0.567 0.583 0.593 0.609 0.611 0.611 

accuracy 0.450 0.543 0.595 0.628 0.638 0.648 0.666 0.677 0.680 0.682 

Figure 3 Performance comparison between models trained with AL. The red area around the line 
shows the standard deviation during training 
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When training with deep learning models, the greater the amount of data, the better the 
outcome. With AL, the greater the number of samples queried per round, the better the 
performance. However, in practical applications, as one increases the number of queried 
samples, the workload of the human annotators increases proportionately. Therefore, it 
becomes important to determine the degree to which the model performance decreases 
when fewer samples are queried. We tested the performance of the model in each round 
when each semantic category query varied, from 1, 3, 5, and 10 samples, respectively. 
Table 5 shows the performance gap under different conditions, the baseline model, and 
the model trained with all of the data. Here we see that the greater the number of samples 
in each round of queries, the better the model performs. However, a smaller number of 
queries can also lead to some significant performance gains (all significantly higher than 
the baseline model): for example, just 1 query sample per semantic category per round 
(only 8% of total sample is used) achieved an effect of 79% (0.579/0.73). When the 
practicality of an application is of prime importance, one may need to consider the effect 
of the model and the load on the human annotator when deciding the optimal number of 
query samples to include. 

Table 5 Model’s performance under a different number of queries for each round (indicated 
by the first column). Numbers in table are accuracy scores for each test set 

#queries Round  
1 

Round  
2 

Round 
3 

Round 
4 

Round 
5 

Round 
6 

Round 
7 

Round 
8 

Round  
9 

Round  
10 

1 0.450 0.479 0.510 0.513 0.525 0.545 0.540 0.569 0.578 0.589 

3 0.446 0.526 0.555 0.583 0.610 0.624 0.640 0.641 0.645 0.657 

5 0.450 0.543 0.595 0.628 0.638 0.648 0.666 0.677 0.680 0.682 

10 0.453 0.547 0.601 0.668 0.670 0.677 0.686 0.684 0.697 0.711 

5.5 Evaluating in application scenario 

We provide another simulation application scenario here for illustrative purposes. 
Consider the case where a gold standard dataset exists, with an unprocessed collection of 
sentences. Assume further the existence of a field expert (say, a junior in medical school) 
acting as a supervisor to classify the queries of active learning. Other settings are the 
same as described in the previous experiments. In this experiment, we compared the 
results with those obtained in the previous experiments. As repeated manual labelling is 
labour intensive, we reduced the number of query rounds to 5 (5 samples queried every 
round) and 5 times. The main findings, shown in Table 6, show that using preprocessed 
data led to better performance.  

Table 6 Comparison between model trained with preprocessed dataset and raw dataset 

Query round 
With preprocessed data With raw data 

precision recall f1 accuracy precision recall f1 accuracy 

1 0.393 0.457 0.390 0.450 0.393 0.463 0.388 0.452 

2 0.472 0.450 0.422 0.543 0.435 0.483 0.419 0.507 

3 0.541 0.526 0.503 0.595 0.464 0.502 0.443 0.536 

4 0.609 0.568 0.558 0.628 0.499 0.507 0.467 0.563 

5 0.610 0.578 0.567 0.638 0.513 0.518 0.478 0.576 

6 0.616 0.592 0.583 0.648 0.531 0.542 0.495 0.584 
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6 Discussion and prospect 

6.1 Discussion 

Natural language processing is experiencing a period of rapid development. However, the 
application of corresponding technologies in ITS, especially with respect to dialogue-
based ITS, lags behind. In this paper, we proposed using deep learning models to perform 
semantic matching in conversation-based ITS and introduced active learning for 
alleviating the problem of labelling large amounts of data. Although related techniques 
(deep learning models and active learning) have been shown to be effective, we were 
unable to find a study testing their effectiveness in the field of learning, the prominent 
feature of which is the high degree of domain specificity. We believe that the main 
contribution of this paper is to evaluate the effectiveness of this method with data that are 
more in line with the learning field and to clarify some key problems when applying the 
proposed method. 

Based on the evaluations reported herein, the proposed model was shown to greatly 
improve the accuracy of semantic matching: accuracy increased from 33% for the 
baseline model to over 60% (dependent upon details of implementation, like query 
rounds and number of queries each round), while needing very small amounts of labelled 
data. By querying more samples, each round served to increase the model’s performance; 
however, it also increased the human supervisor’s workload. Our results showed that 
even when a small number of samples were queried, this was sufficient for the model to 
surpass the performance level obtained with the baseline model. In other words, a small 
amount of extra effort (annotating queried samples in this context) was able to 
significantly improve CbITS’s understanding of learners’ natural language input. We 
believe this to be the core contribution of this study – showing that this scheme has 
practical application value. 

It is important to note that in the first round of testing, where the proposed model was 
trained only with the gold standard dataset, the model’s performance was significantly 
better than baseline (in accuracy: 33% vs. 45%). Further, once annotated samples were 
used performance of the model continued to increase. This held true even if only 10 or 
more samples were used at a time and the sample was the original text without 
preprocessing. In practice, test sets may not exist, making it impossible to know when the 
performance of the model is close to its limit or when it is prudent to discontinue 
training. Lacking additional data, our experiments indicate for now that as long as the 
chosen method continues to run, benefits may be expected to accrue. 

Preparing a training dataset is also often labour intensive, because it involves 
selecting the samples believed to be most useful from a large number of sentences. When 
we trained the model with AL under a condition where no preprocessing was conducted, 
we found that performance of the model was lower. Although using a set of raw un-
preprocessed sentences was able to achieve acceptable results (significantly outperform 
the baseline model), dealing with a large set of sentences greatly increases the running 
time. Therefore, we recommend that a simple semantic similarity calculation be 
performed as described herein to build a training data set capable of filtering out 
sentences that are too dissimilar to the gold standard dataset provided by the domain 
expert. In many cases, developers of CbITS courses may not have experience in NLP-
related fields, but they can easily come up with expectations and misconceptions related 
to the learning content. Our experiments demonstrate that while not the optimal solution, 
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one needs only to have supported material (domain-related corpus) along with some 
labelled samples to be able to train a semantic understanding module with acceptable 
performance (i.e., one that is likely to be much better than the baseline model currently in 
use) to build an adaptive CbITS. This type of approach makes sense at the moment, 
because it requires a great deal of time and effort to create an efficient module to perform 
natural language processing for CbITS. 

Our experimental results showed that our proposed method is effective, both in 
training a deep learning text classifier with fewer data and in distinguishing texts in a 
domain where similar texts may contain different point of views. Whether our 
experimental results can be extended to other domains remains unknown (with this being 
an area in need of further research). We believe that our approach is extendable, for two 
chief reasons: First, the pre-training language model performed well in other more 
complex tasks, and we perceive it is competent enough for text classification tasks. 
Second, the domain (basic diabetes-related knowledge) we chose for demonstration is not 
particularly special, and we are unaware of any evidence suggesting that this domain 
would make the text classification task easier to perform than others we may have 
selected. However, we acknowledge that additional evidence is needed to support our 
claim about the extendibility of our approach.  

When dealing with natural language, which is typically unstructured data, the main 
advantage of deep learning models over traditional machine learning models is their 
ability to engage in representation learning (Bengio et al., 2013). Such models can learn a 
good representation of objects through training. Although no comparisons were made to 
traditional machine learning models, we provide two examples to illustrate this 
advantage with respect to deep learning models. We sampled some sentences and 
calculated the attention value (i.e., the output of the model’s attention layer, which 
indicates the importance of the corresponding words) of each word, as shown in Figure 4. 
The model we describe herein had learned to focus on more critical words for 
classification, which suggests that during training, the model captured the most 
informative cues for the task. 

Figure 4 Learned attention weights for words/characters of samples. The model learned to focus 
on ’informative’ words that help determine if a pair of sentences belongs to the same 
semantic category. Note that the blue part shows the result of the 1st round AL of the 
model, and the red part shows the result of the 10th round 
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Moreover, Figure 5 visualises (using T-SNE; van der Maaten and Hinton, 2008) the 
results of entire samples in the gold standard datasets through different encoding 
methods. This includes the average on PTLM’s output (shown in sub-figure a), output of 
the proposed model’s encoder module (shown in sub-figure b), and average on word2vec 
vectors (shown in sub-figure c). Further, Figure 5b shows a good clustering pattern (i.e., 
the samples that belong to the same semantic category are relatively close), while the 
remaining clustering patterns (5-a and 5-c) are more chaotic, again demonstrating the 
advantages of using deep learning models, which are able to learn better ways to 
represent the domain of interest. 

Figure 5 Visualisation of the golden standard dataset with different encoding methods: (a) mean 
pooling on BERT’s output, (b) output of proposed model’s encoder and (c) mean 
pooling (average) on word2vec vectors 

 

6.2 Prospect 

Although deep learning is very effective, two issues merit continued attention. First, in a 
smaller granularity, does deep learning make a difference in certain contexts, such as 
when students answer a question in natural language? Can it effectively detect the wrong 
description of a knowledge point? Currently, in CbITS, the typical way to solve this 
problem is to use pattern matching, such as in Latham et al. (2012). Second, at present, 
neither machine learning/deep learning nor pattern matching can correctly evaluate 
learners’ natural language at 100%. For example, our findings show that although 
judging the semantic category of a sentence is a relatively simple task (no complex 
knowledge or reasoning is involved), the deep learning algorithm was able to achieve 
only a maximum accuracy of about 70%. In other words, with the current technical 
means, the phenomenon of misunderstanding of learners’ input in CbITS may not be 
eliminated. So how should CbITS developers deal with this? Answers to these and 
related questions merit further exploration by future CbITS designers and developers. 

Computing power and the absence of a large amount of high-quality data are two key 
factors that hinder the large-scale applications of deep learning models. The proposed 
model’s success relies chiefly on the strong representation ability of a deep learning 
model. Our research approach is designed to reduce the need for data in model training; 
however, the need for a certain level of computing power remains. This may, at present, 
restrict large-scale application of the system as presented here. 
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Although we were able to demonstrate that using more advanced deep learning 
techniques could help improve natural language understanding in CbITS contexts, we 
have not yet arrived at the optimal approach. A missing key to fully addressing the 
present puzzle is our inability to understand semantics at a finer granularity. For example, 
if we asked about the causes of diabetes, a student may say, “Lack of insulin leads to low 
levels of blood sugar.” The model we describe above may classify this answer as 
matching the expected category; however, the key information in this answer is incorrect 
(the correct answer is “high level blood sugar” not “low level”). A CbITS should be able 
to detect this kind of error and provide corresponding feedback. At present, the main 
solutions to this problem rely on pattern matching (for example Khuwaja et al., 1994) or 
deep syntactic analysis-based reasoning, which either places too many restrictions on the 
answer (string matching requires a few words of answer length) or is difficult to develop 
(for example in Popescu, 2005). 

7 Conclusion 

Our findings reported herein lead us to conclude that combining the deep learning model 
(mainly the pre-training language model) with AL is an improved scheme for natural 
language understanding in CbITS. By doing so, we can not only make use of the 
excellent semantic representation ability of deep learning, but also avoid expending 
excessive effort on collecting training data. With respect to research question 1, in a 
dataset closer to a given learning field, our proposed scheme significantly outperformed 
the baseline model (currently in use). Regarding research question 2, the application of 
our method for enhancing performance required that we only needed to make a minimal 
effort. For example, providing only a gold standard dataset (which contained only a very 
small number of samples per semantic category) allowed us to achieve a 36% 
performance improvement. If a domain text set is provided, along with labelling for a 
small number of samples, the performance improvement was found to be more 
significant (and may well exceed over 100%). In summary, we believe that our research 
provides practical guidance for improving natural language understanding in CbITS. 
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Appendix 

Samples of categories in Table 1. The original samples are in Chinese, but the text 
reported here contains the English translations for demonstration purposes. 

Category Sub-category Sample 

Diabetes 

Definition 
In type 2 diabetes, the body can produce insulin, but due to a 
relative lack of insulin secretion or deficiency of action (also 
known as insulin resistance), blood sugar increases. 

Description Type 2 diabetes is a very common metabolic disease. 

Categories Clinically, diabetes is mainly divided into two types, type 1 
diabetes and type 2 diabetes. 

Clinical 
symptoms 

Clinically, hyperglycaemia is the main feature, and typical cases 
may have symptoms such as polyuria, polydipsia, polyphagia 
and so on. 

Epidemiological 
characteristics  

China’s national health big data shows that China’s total 
population is 1.4 billion, there are 140 million diabetic patients, 
and one and four diabetics in the  world are all Chinese. 

Treatment 

Hypoglycae
mic drugs 

The hypoglycaemic mechanism of sulfonylureas is mainly to 
stimulate insulin secretion, which is suitable for patients with 
complete islet function. Obese patients should be combined with 
weight control and biguanide hypoglycaemic drugs. 

Insulin 
related 

The hypoglycaemic effect of quick-acting insulin analogues is 
similar to that of short-acting human insulin, but superior to 
human insulin in simulating physiological insulin secretion, 
reducing the amplitude of PPG and the risk of hypoglycaemia. 

Diet related 

People with diabetes should not eat sugary foods at will, because 
the sugars that are easily absorbed will cause a rapid increase in 
blood sugar, which will overwhelm the damaged islet B cells 
and aggravate the disease. 

Exercise 
related 

Exercise has an important therapeutic effect that cannot be 
replaced by drugs. Regular and effective moderate intensity 
exercise therapy can significantly reduce the level of blood 
glucose in patients with type 2 diabetes mellitus. 

General 
Timely and correct treatment is very helpful to patients with type 
2 diabetes. 

Cause of 
disease 

Life style 

Stress, tension, staying up late, insomnia, alcoholism, work 
difficulties, hypoglycaemia and negative emotions are all 
common stress stimuli, which may lead to increased hormone 
secretion, thereby raising blood sugar levels. 

Other 
diseases 

More and more scientific studies have shown that children who 
don’t get enough sleep are more likely to develop type 2 
diabetes. 

Heredity 

The heritability of type 1 diabetes is about 72-88%, that is to 
say, congenital genetic factors have more influence than 
acquired environmental factors. 

 

 

 



   

 

   

   
 

   

   

 

   

   324 S. Xu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Category Sub-category Sample 

Harm Harm 

As these tissues and organs are forced to operate in a state  
of hyperglycaemia, over time, there will naturally be the tragedy 
of damage, dysfunction, failure, and eventually lead to 
complications. 

Diagnosis Diagnosis 
The fasting blood glucose of normal people was less than 
6.1 mmol/L, and after taking glucose for 2 hours, the blood 
glucose was less than 7.8 mmol/L. 

Related 
metabolism 

Related 
metabolism 

The control of blood sugar level in the body needs the pancreas 
to play a role. The pancreas has islet A cells and islet B cells.  
A cell is responsible for raising blood sugar and secretes a 
hormone called glucagon. 

 


