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Abstract: The manufacturing requirements of the aerospace industry makes it 
imperative to use thin wall machining techniques to machine parts that would 
otherwise have to be assembled from a number of parts. To achieve high 
productivity, there must be increase in material removal rate, which is 
constrained by the geometrical accuracy and surface finish requirements. Thus, 
a compromise must be made between productivity and product quality. This 
paper presents an optimisation scheme to improve the productivity while 
keeping the surface finish within acceptable limits during thin-wall machining 
operations. Initially full factorial experiments were carried out on machining of 
closed thin walled pocket by varying feed, cutting speed and tool diameter. 
Surface roughness and material removal values for all experiments were 
recorded. Analysis of variance was carried out to find out the most significant 
process parameter. Later firefly algorithm, a nature inspired swarm 
optimisation technique was employed to obtain the optimum process 
parameters for desired performance. A confirmation experiment was carried out 
which indicates an error of 1.27% and 1.03% between predicted and 
experimental results of surface roughness and material removal rate 
respectively. 
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1 Introduction 

The dawn of the twentieth century saw a major transformation in the transportation sector 
with the invention of the airplane. The ever increasing demand for more convenient, 
cheaper and faster means of transportation together with the quest for exploration of the 
outer space has led to a tremendous growth of the aerospace industry. To cope up with 
the increasing demands for quality and quantity the manufacturers have switched to thin 
wall machining for those parts which were assembled from a number of other parts. The 
use of thin wall machining reduces the part cycle time by creating one piece flow of 
monolithic parts. These parts can be machined from a single block of metal which 
eliminates the need to manufacture multiple parts for assembling into a single one  
(Thin Wall Machining, 2015). Besides, these parts have excellent strength to weight ratio 
and cost advantages over conventional monolithic parts (Shamsuddin et al., 2013). 
However, to achieve low part cycle time, there must be increase in the MRR. But care 
should also be taken such that, while increasing the MRR surface quality does not 
degrade steeply. Thin wall machining finds application in automotive parts, electrodes for 
electro discharge machining and moulds (Kennedy and Earls, 2007). In applications like 
mould making and electrodes, surface finish plays a very crucial role in deciding the final 
usability of the end product. Thin wall machining is a special case of machining where 
the wall thickness is less in comparison to the other dimensions of the part. Yang (1980) 
has defined thin walled parts as those which satisfy the following criteria: 

1 1
100 5

t
h

< <  (1) 

where t is the thickness of the thin wall and h is the length of the shortest edge of the 
wall. 

Review of literature reveals a significant work on experimental as well as numerical 
fronts in the area of conventional milling process. Hayajneh et al. (2007) studied the 
effect of spindle speed, cutting feed rate and depth of cut and their interaction on surface  
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roughness (SR) of end milling of aluminium by analysis of variance (ANOVA) and 
developed a mathematical model with multiple regression analysis to predict the SR. 
Wang et al. (2005) analysed the SR behaviour of micro-end milling of brass with respect 
to tool diameter, feed rate, depth of cut and spindle speed. They deployed ANOVA and 
RSM method to find out the influence level of the cutting parameters and their interaction 
on SR. Subsequently a quadratic mathematical model was developed by them to describe 
the relation between the cutting parameters and SR. Seguy et al. (2008) carried out finite 
element analysis for thin wall milling of 2017 aluminum alloy and developed stability 
and dynamic model to give detailed insight into the thin wall milling process. Michalik  
et al. (2014) studied the effect of up milling and down milling on SR (Rz) of C45 steel 
during thin wall milling and correlates the input factors with SR. Hossain and Ahmad 
(2012) developed an Adaptive Network-based Fuzzy Interface System (ANFIS) to 
predict the SR of three dimensional end milling of aluminium with respect to cutter axis 
inclination angle, spindle speed, feed rate, radial depth of cut, axial depth of cut. The 
predicted results were then compared with ANN and RSM-based prediction results and 
experimental results. Thus it can be inferred that there has been a number of studies on 
the effect of process parameters on SR for normal machining operations. 

During thin wall machining operation, at high MRRs, static and dynamic problems, 
particularly the self-excited vibration called chatter, appear due to the lack of stiffness of 
the thin walls and webs. In end milling process, the thickness of the plates is reduced 
gradually, which makes it even more difficult to control the accuracy of machining. The 
end milling of such plates is complicated, where periodically varying milling forces 
excite the flexible plate structures both statically and dynamically and leading to 
significant deformations and poor surface finish. However, a very limited information is 
available on the optimum process parameters that can be employed during thin wall 
machining process to obtain the desired process performance. 

In this paper an attempt has been made to optimise the process parameters so that 
there is considerable increase in the MRR without compromising on surface quality. 

Figure 1 The experimental setup (see online version for colours) 
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Figure 2 Initial and final specimen geometry (see online version for colours) 

 

2 Methodology 

2.1 The experimental setup 

The experiments were carried out on a 3-axis vertical milling machine with a maximum 
spindle speed of 10,000 rpm using a custom made setup shown in Figure 1. The specimen 
used for the experiments were made up of commercial 1000 series aluminium. A total of 
27 specimens were prepared from an initial raw stock of size 51mm × 51mm × 51mm. 
The material was removed from the raw stock by end milling operation. The SR was 
measured by means of a contact probe type SR tester of Mitutoyo SJ-400 make. The 
initial and final specimen shape and size are shown in Figure 2. 

2.2 Design of experiments 

It was intended to find out the effect of the process parameters on surface finish during 
thin wall machining of the specimens. Besides, it was also desired that the interaction 
among the process parameters is also determined. It was, therefore imperative that the 
experiments be designed in such a way so as to accomplish all the desired goals. There 
are a number of approaches in which the experiments can be designed. Taguchi approach 
to design of experiments allows the experimenter to include a number of factors in the 
experiments while keeping the number of experiments to a bare minimum. For example, 
to design an experiment involving three factors each with three levels, the factorial design 
requires 33 = 27 experiments to be done. However, the same can be achieved with only 
nine experiments using Taguchi design of experiments. But Taguchi approach is not 
effective in determining the interaction among the process parameters. In fact, factorial 
experiments are the only way to discover interactions between variables (Montgomery, 
2014). Therefore, in this work, factorial design was used for the experiments with the 
process parameters, listed in Table 1, with a total of 27 experiments. 
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Table 1 Experimental process parameters 

Process parameter 
Values 

Level 1 Level 2 Level 3 
Speed rpm 3,000 3,500 4,000 
Feed mm/tooth 0.06 0.08 0.10 
Tool diameter mm 8 10 12 
Radial depth of cut mm 0.55 (constant) 
Axial depth of cut mm 0.25 (constant) 
Helix angle  30° 
Tool material  High speed steel 
Number of flutes  4 

Table 2 Experimental data 

Exp. no. Speed rpm Feed mm/tooth Tool diameter 
mm 

Surface 
roughness μm 

MRR cu. 
mm/min 

1 3,000 0.06 8 1.915 1,374.7 
2 3,000 0.08 8 2.133 1,807.4 
3 3,500 0.06 8 1.509 1,592.5 
4 4,000 0.1 8 1.822 2,904.6 
5 4,000 0.06 8 1.427 1,807.4 
6 3,500 0.1 8 1.760 2,570.2 
7 4,000 0.08 8 1.847 2,366.0 
8 3,500 0.08 8 2.035 2,089.2 
9 3,000 0.1 8 1.731 2,228.2 
10 4,000 0.1 10 0.529 3,014.3 
11 3,500 0.08 10 0.555 2,169.8 
12 3,000 0.06 10 0.491 1,428.6 
13 4,000 0.06 10 0.517 1,877.5 
14 3,500 0.06 10 0.513 1,654.7 
15 3,000 0.08 10 0.589 1,877.5 
16 4,000 0.08 10 0.580 2,456.5 
17 3,000 0.1 10 0.549 2,313.8 
18 3,500 0.1 10 0.587 2,668.1 
19 4,000 0.1 12 0.322 3,133.4 
20 3,500 0.1 12 0.232 2,774.5 
21 3,500 0.08 12 0.259 2,257.3 
22 3,500 0.06 12 0.273 1,722.3 
23 3,000 0.08 12 0.368 1,953.8 
24 4,000 0.06 12 0.246 1,953.8 
25 3,000 0.06 12 0.214 1,487.3 
26 4,000 0.08 12 0.210 2,555.0 
27 3,000 0.1 12 0.206 2,406.9 
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Most of researchers have focused on the cutting parameters like speed, feed, and depth of 
cut while the tool-based parameters like tool diameters like tool diameter, tool path, helix 
angle, number of flutes, etc. have received scant attention. Therefore in the present work 
axial depth of cut and radial depth of cut were kept constant, and the effect of variation in 
tool diameter was considered. Literature reports that keeping the axial depth of cut at less 
than or equal to one-fourth of the final wall thickness results in less deformation (Modern 
Machine Shop, 2009). Also all the research works reported in the literature are based on 
straight, open walls. No work has been carried out on the thin wall machining of closed 
structures. It was therefore decided to use closed thin walled components for this study 
and record the impact of the process parameters on the geometrical accuracy. 

A total of 27 experiments were carried out and the SR of the machined walls was 
measured at five different locations and the average value was calculated. Besides, the 
MRRs were also computed from the measured machining times. The collected 
experimental data are illustrated in Table 2. 

3 Results and discussion 

Analysis of variance or ‘ANOVA’ is an analytical tool used to determine the significance 
of factors in an experiment by looking at the relationship between a response variable and 
a factor. In a simple factorial experiment comprising of three variables (A, B and C) at 
three levels (a levels of A, b levels of B and c levels of C), any observation can be 
described by the linear statistical model: 

( ) ( ) ( ) ( )ijkl i j k ijklij ik jk ijkY μ τ γ τ τγ γ τ γ= + + + + + + + + ∈β β β β  (2) 

1, ,
1, ,
1, ,
1, ,

i a
j b
k c
l n

=⎧ ⎫
⎪ ⎪=⎪ ⎪
⎨ ⎬=⎪ ⎪
⎪ ⎪=⎩ ⎭

…
…
…
…

 

where μ is the overall mean effect, τi is the effect of ith level of factor A, βj is the effect of 
jth level of factor B, γk is the effect of the k-th level of factor C, (τβ)ij is the effect of 
interaction between A and B, (τγ)ik is the effect of interaction between A and C, (βγ)jk is 
the effect of interaction between B and C, (τβγ)ijk is the effect of interaction between A, 
B, C and ∈ijkl is a random error component having a normal distribution with zero mean. 

The effect of a factor is the change in response produced by a change in level of the 
factor and is often called a main effect. ANOVA is used to test hypotheses about the 
main effects of the factors and their interactions. A hypothesis is a statement about some 
process parameter in an experiment whose validity is to be decided upon. The decision 
making procedure about the hypothesis is known as hypothesis testing. ANOVA tests 
these hypotheses by decomposing the total variability in the data into component parts 
and then comparing the various elements. The total variability is measured by the total 
sum of squares of the observations. From the total sum of squares the mean sum of 
squares is calculated as (Montgomery, 2014): 

i
i

SSMS
d

=  (3) 
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where, MSi is the mean square of treatment i, SSi is the sum of squares of treatment i and 
d is the degree of freedom and is calculate as shown in Table 3. Next, the Fo value is 
calculated as 

0
i

e

MSF
MS

=  (4) 

where MEe is the mean square error. After the Fo values are calculated, the p-values are 
calculated using R programming language. 
Table 3 Levels of experimental process parameters and degrees of freedom 

Parameter Code Level 1 Level 2 Level 3 Degrees of freedom 
Feed (mm/tooth) A 0.06 0.08 0.1 (a-1) = 2 
Speed (rpm) B 3,000 3,500 4,000 (b-1) = 2 
Tool diameter (mm) C 8 10 12 (c-1) = 2 
Interaction (feed-speed) AB - - - (a-1)(b-1) = 4 
Interaction (feed-tool diameter) AC - - - (a-1)(c-1) = 4 
Interaction (speed- tool diameter) BC - - - (b-1)(c-1) = 4 
Interaction (three factor) ABC - - - (a-1)(b-1)(c-1) = 8 
Error E - - - abc(n-1) = 27 
Total T - - - (abcn – 1) = 53 

3.1 ANOVA for SR 

The ANOVA for SR is illustrated in Table 4. 
Table 4 ANOVA for SR 

Source of variation Sum of squares
SSi 

DOF 
d 

Mean square
MSi 

Fo p-value 

Feed (A) 0.2062 2 0.1031 1.1385 0.3350 
Speed (B) 0.0083 2 0.0042 0.0461 0.9551 
Tool diameter (C) 23.8093 2 11.9046 131.4618 1.21E-14 
AB 0.0916 4 0.0229 0.2528 0.9053 
AC 0.3237 4 0.0809 0.8938 0.4811 
BC 0.1777 4 0.0444 0.4905 0.7430 
ABC 0.9953 8 0.1244 1.3739 0.2520 
Error 2.4450 27 0.0906 1.0000  
Total 28.0571 53    

Now the critical values of F for 95% confidence (i.e. α = 0.05) are: 

DOF Fcritical 
2,27 3.35 
4,27 2.73 
8,27 2.31 
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From the above analysis the following observations are made: 

• The tool diameter (C) significantly affects SR since the Fo value, 131.4618, is 
significantly higher than the critical value of 3.35. Besides, the p-value 1.21 × 10-14 is 
also significantly lower than α. Thus the null hypothesis, Ho, is rejected for C. 

• There is no interaction between the factors for SR as the Fo values are below the 
corresponding Fcritical values. This means that the change in SR due to change in the 
level of one process parameter is independent of the other process parameters. 

• Tool diameter is the most significant parameter for both deformation and SR. The 
order of significance is: 

 

Figure 3 shows the relative significance of the process parameters for SR. From the study 
it can be seen that the most significant parameter is the tool diameter (C). 

Figure 3 Percentage contributions of process parameters to SR 
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3.2 Effect of process parameters on SR 

From Figure 4(a) it can be seen that the Ra value increases with increase in feed per tooth 
from 0.06 to 0.08 mm/tooth. But there is a slight decrease in Ra with further increase  
in feed from 0.08 to 0.1. This observation can be explained on the basis of equation 
(Juneja and Seth, 2003), 



   

 

   

   
 

   

   

 

   

    Optimum process parameters for efficient and quality thin wall machining 11    
 

    
 
 

   

   
 

   

   

 

   

       
 

28
9 3

t
a

fR
D

=  (5) 

where Ra is the average SR, ft is the feed per tooth and D is the tool diameter. 

Figure 4 Main effect plots for SR, (a) main effect of feed (b) main effect of speed (c) main effect 
of tool diameter 

 

0.06 0.08 0.10
0.7

0.8

0.9

1.0

1.1

A
ve

ra
ge

 R
a (

μm
)

Feed (mm/tooth)  

3000 3500 4000
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

A
ve

ra
ge

 R
a (

μm
)

Speed (rpm)  
(a)     (b) 

 

8 10 12

0.3

0.6

0.9

1.2

1.5

1.8

A
ve

ra
ge

 R
a (

μm
)

Tool diameter (mm)  
(c) 

It implies that the Ra is directly proportinal to the square of the feed per tooth. Thus the 
Ra value should increase with increase in feed per tooth, which is the global trend 
observed in the experimental data. However, there is a decrease in Ra with further 
increase in feed. 

Figure 4(b) shows the effect of speed on SR. It is observed that the Ra value decreases 
with increase in speed from 3,000 rpm to 3,500 rpm. However, with the increase in speed 
from 3,500 rpm to 4,000 rpm, the Ra value increases. At low speeds the cutting forces are 
high and there is a possibility of the formation of built-up edges which deteriorates the 
surface finish. At higher speeds, the cutting forces and the tendency to form built-up edge 
decreases due to increase in cutting temperature and the decrease in stress at the rake 
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face. Thus the surface finish improves with increasing speed. The effect of spindle speed 
on the SR is a bit complicated as this invloves the machine paramters as well. At a 
particular spindle speed the frequency of the cutter striking the workpiece may become 
equal to the natural frequency of the workpiece. This lead to a condition known as 
resonance which is characterised by large amplitudes of deflection resulting in vibration 
and chatter. This leads to a poor surface finish, i.e., a high value so Ra. From Figure 4(b) 
it can be seen that at first the Ra value decreases with increase in the spindle speed but 
then increases with further increase in speed. This is due to the fact that there is 
considerable amount of chatter due to vibrations near the 4,000 rpm mark for the machine 
used for the experiments which resulted in high Ra values. 

From Figure 4(c), it is observed that the Ra value decreases globally with increase in 
tool diameter. The variation in the Ra values can be explained by means of the expression 
for SR given by equation (5) which states that Ra is inversely proportional to the tool 
diameter. With an increase in tool diameter for the same speed and feed, the height of 
irregularities on the surface reduces due to which the Ra value decreases as shown in 
Figure 5. 

Figure 5 Effect of increase in tool diameter on roughness height 
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The interaction plots for Ra are shown in Figure 6. From the interaction plots it can be 
seen that there is interaction between feed and speed but no such interaction is indicated 
from the ANOVA. It can be seen that the graphs have nearly equal slopes and thus it may 
be concluded that there is no interaction between feed and speed. The same can be 
concluded for the others where the graphs are nearly parallel with very little difference in 
slopes. 

Figure 6 Interaction plots for SR (see online version for colours) 

 

3.3 Effect of process parameters on MRR 

Figure 7 shows the main effects plots for MRR. MRR for milling can be expressed as, 

p e tMRR f N z= × × × ×α α  (6) 

where ap is the axial depth of cut, ae is the radial depth of cut, ft is the feed per tooth, N is 
the spindle speed and z is the number of tooth of the milling cutter. 
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Figure 7 Main effect plots for MRR, (a) main effect of feed (b) main effect of speed  
(c) main effect of tool diameter 
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It can be seen from Figure 7(a) that the MRR increases with increase in feed. This is 
because the cutter traverses more distance with higher feed rates in the same time, 
thereby increasing the MRR. Besides from equation (6) it is evident that the MRR is 
directly proportional to the feed per tooth. Figure 7(b) shows that the MRR is higher for 
higher spindle speed. For the same feed and tool diameter, when the speed increases, 
there is an increase in the number of contacts made by the cutter with the workpiece. This 
increases the number of cutting motions per pass which results in more amount of 
material removal. Therefore an increase in spindle speed is accompanied by a 
corresponding increase in the MRR. The same can be concluded from equation (6), 
which states that the MRR is directly proportional to the spindle speed. 

From Figure 7(c), it can be seen that the MRR increases with an increase in tool 
diameter. For the same feed per tooth and spindle speed, an increase in tool diameter will 
cause more of the tool going inside the workpiece, thereby increasing the MRR. 
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Figure 8 Interaction plots for MRR (see online version for colours) 
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Figure 8 shows the interaction plots for MRR. From the plots it is seen that the graphs are 
parallel to each other which indicates that there is no interaction between the process 
parameters. This means that the variation of MRR with the change in level of any one of 
the process parameters is independent of the other parameters. 

4 Optimisation of process parameters using firefly algorithm 

4.1 Firefly algorithm 

Optimisation can be classified in various ways. One of the simplest ways to classify 
optimisation is to categorise them in two types: deterministic and stochastic. 
Deterministic algorithms search for optimum point in a predefined path. On the contrary 
stochastic algorithms include randomisation which increases the area of search thus 
making them more suitable for global optimisation. While most of the conventional 
algorithms are deterministic in nature, the nature inspired algorithms are stochastic. In the 
modern scenario there exist a good number of nature inspired algorithms. Among these 
algorithms particle swarm optimisation, cuckoo search and firefly algorithms are well 
established into the area of optimisation as they are proven to be very efficient. With 
respect to various nature inspired algorithms, firefly algorithm is one of the most recently 
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developed optimisation technique. Yang (2009) carried out a systematic study comparing 
firefly algorithm, particle swarm optimisation and genetic algorithm to find out the best 
technique with respect to efficiency and effectiveness. The findings reveal that the firefly 
algorithm is superior to both particle swarm optimisation and genetic algorithm in terms 
of both efficiency and success rate. Gandomi et al. (2011) employed firefly algorithm to 
solve mixed variable structural optimisation problem. The optimisation results showed 
that firefly algorithm is more efficient than particle swarm optimisation, genetic 
algorithm, simulated annealing and hunting search. Apostolopoulos and Vlachos (2010) 
used firefly algorithm to minimise fuel cost and emission of generating units in a power 
plant. The results depicted the accuracy and high success rate of the firefly algorithm in 
searching for global optimum. Senthilnath et al. (2011) used firefly algorithm for 
clustering and the results were compared with the particle swarm optimisation, artificial 
bee colony and other famous algorithms. This comparison favoured firefly algorithm to 
be more worthy and efficient for global optimisation. Based on all the above studies it 
was therefore decided to use firefly algorithm for optimisation of thin wall machining 
parameters. 

Firefly algorithm is a kind of swarm optimisation technique (Yang, 2009). Swarm 
intelligence is a form of artificial intelligence that is inspired from the collective 
behaviour of animals and insects alike. The collective system is self-organised and 
decentralised consisting of simple agents that organise themselves using neighbourhood 
interactions. The individual agents are relatively unsophisticated individuals but they 
exhibit coordinated behaviour that directs the swarm towards their desired goals. 

Firefly algorithm is such a stochastic, meta-heuristic algorithm which can be used to 
solve a wide variety of optimisation problems and is inspired by the self-organised 
behaviour of the fireflies. Fireflies are known for their characteristic short and rhythmic 
flashing lights which are produced by a process of bioluminescence. Although, the true 
functions of the flashes are still debated, two fundamental functions, which are generally 
accepted, are to attract mating partners and to attract potential prey besides warning other 
predators of their bitter taste. In the firefly algorithm, the flashing light, which is 
inversely proportional to the square of the distance from the source, is formulated in such 
a way that it is associated with the objective function to be optimised. For simplicity of 
analysis the following assumptions were made (Iztok et al., 2013): 

• All fireflies are unisex, so one firefly will be attracted to other fireflies regardless of 
their sex. 

• Attractiveness is proportional to a firefly’s brightness. Thus for any two flashing 
fireflies, the dimmer one will move toward the brighter one. The attractiveness is 
proportional to the brightness, both of which decrease as their distance increases. If 
there is no brighter one than a particular firefly, it will move randomly. 

• The brightness of a firefly is affected or determined by the landscape of the objective 
function. 

On the basis of the rules stated above, the firefly algorithm can be summarised by the 
following pseudo-code (Iztok et al., 2013): 
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Objective function: f(x), x = (x1, ..., xd)T . 
Generate an initial population of n fireflies xi (i = 1, 2, ..., n). 
Light intensity Ii at xi is determined by f(xi). 
Define light absorption coefficient γ. 
while (t <MaxGeneration), 
for i = 1 : n (all n fireflies) 
for j = 1 : n (all n fireflies) (inner loop) 
if (Ii < Ij) 
Move firefly i towards j. 
end if 
Vary attractiveness with distance r via exp[−γr2]. 
Evaluate new solutions and update light intensity. 
end for j 
end for i 
Rank the fireflies and find the current global best g*. 
end while 
Post-process results and visualisation. 

Formulation of firefly algorithm involves two important aspects: variation of light 
intensity and formulation of attractiveness. It is assumed that the attractiveness of a 
firefly is a function of its brightness which in turn is a determined by the objective 
function. 

The light intensity I of a firefly relative to another firefly at a distance r from it is 
given by: 

2
0( ) γrI r I e−=  (7) 

where I0 is the intensity at the source (r = 0) and γ is the light absorption coefficient. 
Similarly, the attractiveness (β) of a firefly, which is proportional to the light intensity 

as seen by the other fireflies, can be formulated as follows: 
2

0( ) γrr e−=β β  (8) 

where β0 is the attractiveness at r = 0. 
The light intensity and attractiveness though appear to be similar in some aspects, 

there is a major difference between them. The light intensity is an absolute measure of the 
light emitted by a firefly whereas the attractiveness is a relative measure of the light that 
is seen and judged by any other firefly. Moreover, the distance between any two fireflies 
xi and xj is expressed as follows: 

( )2

1

d

ij i j ik jk
k

r x x x x
=

= − = −∑  (9) 

where xi,k is the kth component of the spatial coordinate xi of ith firefly. 
The movement of a firefly i attracted to another, brighter firefly j is determined by: 

( )2
0 ijγri i j i ix x e x x ε−= + − +β α  (10) 
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where α∈ [0, 1] is the randomisation parameter and єi is a random number drawn from 
Gaussian distribution. The parameter γ has a crucial impact on the convergence speed 
whose settings depends on the optimisation problem. Its value varies between 0.1 and 10. 

Figure 9 Variation of MRR with process parameters 

 

Figure 10 Variation of SR with process parameters 
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Thin wall machining is used to produce parts from solid metal/alloy blocks by removing 
up to 95% of the material. Thus, the overall productivity of the process depends mostly 
on the MRR. To achieve higher MRRs, higher feed, speed and depth of cut along with 
larger tool diameter are essential. But the use of higher levels of these parameters may be 
detrimental to overall product quality in the form of geometrical inaccuracy and poor 
surface finish. The variation of SR and MRR as recorded during the experiments is 
shown in Figures 9 and 10. It can be seen that the MRR increases with increase in tool 
diameter while the SR decreases. Similarly, high speed and feed lead to high MRR but 
poor surface finish. 

Thus, the objective function can be composed of a linear combination of SR and 
MRR. For maximising productivity, MRR must be maximised while keeping SR at the 
minimum. To achieve this, a single objective function is developed from the individual 
regression equations for SR [equation (11)] and MRR [equation (12)]. The regression 
equations are developed in MATLAB using the functions polyfitn and polyvaln 
developed by John D’Errico which is freely available at MATLAB central file exchange 
(MATLAB Central, 2012). 

( )
( ) ( )

( )

3

3 5

2 8 2 2

17.97441 (44.17106) 1.44209 10 (2.92148)
5.13990 10 5.6089510 (0.90572)

(320.90783) 5.61171 10 (0.12065)

SR A B C
AB BC AC

A B C

−

− −

−

= + − × −

+ × + −

− + × +

 (11) 

2,297.15940 (25,320.05785)A (0.57670)B (41.77596)CMRR = − + + +  (12) 

where A = feed, B = speed and C = tool diameter. 
For the regression equations the following parameters were recorded: 

Table 5 Details of regression analysis 

Parameter Surface roughness Material removal rate 
R-squared 0.9831 0.9915 
Adjusted R-squared 0.9741 0.9904 
Predicted R-squared 0.9553 0.9871 
Adequate precision 26.965 94.544 

where 

• R-squared: a measure of the amount of variation around the mean explained by the 
model. 

• Adjusted R-squared: a measure of the amount of variation around the mean 
explained by the model adjusted for the number of terms in the model. 

• Predicted R-squared: a measure of the amount of variation in new data explained by 
the model. 

• Adequate precision: it is a signal to noise ratio. It compares the range of predicted 
values at the design points to the average prediction error. 

Now, we have to formulate a single objective function from equations (11) and (12). The 
overall objective function will be of the form: 
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1 2y w MRR w SR= × − ×  (13) 

where w1 and w2 are the weights to be decided upon. These weights indicate the 
precedence or bias toward either of the parameters. For our case, we are supposed to get 
maximum MRR without compromising the surface quality. Therefore a value of 0.5 was 
chosen for both w1 and w2. It is to be noted that if SR is more important to the 
experimenter then more weightage should be put on w2 and vice-versa. Since the SR is to 
be minimised, its weight w2 is preceded with a minus sign. 

The next and the most important step is to decide upon the methodology to be used 
for the optimisation. There are a number of optimisation techniques prevalent in literature 
including genetic algorithm-based techniques and swarm optimisation techniques like 
particle swarm optimisation, firefly algorithm, cuckoo search algorithm, etc. Among all 
these techniques, firefly algorithm was chosen as the preferred optimisation technique 
based on the findings of Yang (2009). 

The code for firefly algorithm is open source and freely available from 
http://www.mathworks.in. The MATLAB code is slightly modified to include the 
objective function given by equation (13) and also to include provision for data extraction 
and plotting. The results obtained after running the optimisation code are as follows: 
Table 6 Optimised process parameters 

Parameter Optimised value 
Feed (mm/tooth) 0.1 
Speed (rpm) 3839 
Tool diameter (mm) 10 

By putting these values in equations (11) and (12) the obtained optimum values of SR 
and MRR are shown in Table 7. It can be that the optimised process parameters yield 
considerably good results. The MRR obtained is 32.42% higher than the average value 
whereas the SR value obtained is about 37.25% lower than the average value. 
Table 7 Productivity and quality improvement using optimised results 

Parameter Optimised value Average values % improvement 
MRR (mm3/min) 2866.557 2164.643 32.42 
SR (μm) 0.5443 0.86746 37.25 

5 Confirmation experiment 

A confirmation experiment was carried out to validate the optimisation results. The 
experiment was carried out using the optimised set of process parameters derived using 
firefly algorithm given in Table 7. After the machining process, the resulting surface 
finish of the component is measured at 5 different locations and the average Ra value is 
measured. Similarly the MRR is also calculated from the measured machining times. 
These values are then compared with the values obtained by putting the optimised values 
of the process parameters in the regression equations for Ra and MRR given by  
equations (11) and (12) respectively. It is found that the prediction results are quite 
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accurate with an average absolute error of 1.27% for SR and 1.03% for MRR as shown in 
Table 8. 
Table 8 Comparison between predicted and experimental results 

Outputs Optimised Experimental % error 
MRR (mm3/min) 2,866.557 2,903.681 1.27 
SR (μm) 0.5443 0.550 1.03 

6 Conclusions 

In this study the effects of process parameters on the SR and MRR obtained during thin 
wall machining of monolithic closed geometrical components are presented. Analysis of 
variation is carried out on the experimental data and the interaction among the variables 
is studied. From the study it is found that tool diameter is the most important parameter 
for SR. Further, the process parameters are optimised using firefly algorithm and it is 
found that the optimised set of process parameters results in an improvement of 32.42% 
and 37.25% over the average values of MRR and SR respectively. The results are 
validated by conducting a confirmation experiment which indicates an error of 1.27% and 
1.03% between predicted and experimental results of MRR and SR respectively. 
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