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Abstract: This paper is concerned with a hospital staff scheduling problem 
wherein surgical operation times are stochastic. We formulate a complete 
recourse, scenario-based model for this problem, and develop a branch-and-cut 
(B&C) algorithm that is further hybridised with the Monte Carlo method 
(MCM). The proposed hybrid MCM-based approach is demonstrated to 
substantially reduce the required computational effort over a purely 
branch-and-cut methodology while producing near-optimal solutions having 
relatively small optimality gaps. 
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1 Introduction 

This paper addresses a hospital staff scheduling problem that is concerned with the 
scheduling of surgeons to operating rooms so as to maximise revenues. Operating rooms 
are among the most revenue-generating resources of a hospital, and their proper 
utilisation plays a critical role in the fiscal viability of the hospital. We assume that the 
time required by a surgeon to perform an operation is stochastic, and we accordingly 
designate the underlying problem as a stochastic hospital staff scheduling problem 
(SHSSP). We formulate a two-stage stochastic mixed-integer programming (MIP) model 
for this problem and design a branch-and-cut (B&C) method to solve it. Furthermore, we 
integrate the developed B&C algorithm with a Monte Carlo method (MCM), where the 
latter affords the use of a fewer number of scenarios while producing near-optimal 
solutions, and we demonstrate the effectiveness of the proposed hybridised B&C-MCM 
approach. 

Existing studies on hospital scheduling problems have focused on two areas: staff 
scheduling (Beliën and Demeulemeester, 2006; Beliën, 2007; Berrada et al., 1996; Bosi 
and Milano, 2001; Burke et al., 2002; Chen and Yeung, 1993; Jaszkiewicz, 1997; 
Jaumard et al., 1998; Sherali et al., 2002; Sherali and Smith, 2002; Trivedi and Warner, 
2001) and operating room scheduling (Batun et al., 2011; Blake and Donald, 2002; 
Denton et al., 2010; Dexter et al., 1999, 2001; Guinet and Chaabane, 2003; Jebali et al., 
2006; Lamiri et al., 2008; Lapierre et al., 1999; Litvak and Long, 2000; Marcon et al., 
2003; Ozakarahan, 1989, 1995, 2000; Verweij et al., 2003). In this context, the term, staff 
usually refers to nurses, trainees, residents, and surgeons. These studies have been 
motivated by the desire to improve the efficiency of a hospital system and reduce costs, 
which promotes affordable, yet competitive, health care service. 

The nurse scheduling problem (Berrada et al., 1996; Burke et al., 2002; Chen and 
Yeung, 1993; Jaszkiewicz, 1997; Jaumard et al., 1998; Sherali and Smith, 2002) pertains 
to determining work periods (or shifts) for nurses on a daily basis from among three 
shifts: day-shift, night-shift, and late-night shift. Alternative objective functions include 
the minimisation of operating costs, the maximisation of a preference function of nurses, 
or the minimisation of conflicts between the schedule and nurse preferences. Constraint 
logic programming methods (Bosi and Milano, 2001), metaheuristics (Burke et al., 2002; 
Jaszkiewicz, 1997), and expert system approaches (Chen and Yeung, 1993) have been 
applied to optimise such problems. Venkataraman and Brusco (1996) presented an 
integrated approach to nurse staffing and scheduling. Beliën (2007) examined the  
trainee scheduling problem and Beliën and Demeulemeester (2006) developed a  
branch-and-price solution procedure for this problem. Sherali et al. (2002) studied the 
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resident scheduling problem that is concerned with assigning shifts to residents based on 
departmental staffing and skill requirements as well as residents’ preferences. 

The operating room scheduling problem addresses the assignment of a surgical group 
to operating rooms. The pertinent entities include surgical groups, operating rooms, and 
the duration for which each surgical group needs an operating room. Blake and Donald 
(2002) developed an integer programming model to assign each surgical group to an 
operating room, while penalising the gap between the preferable operating time and the 
actual assigned time. Santibanez et al. (2005) formulated a model that jointly considers 
the availabilities of operating rooms and patient beds, as well as the order of patients on 
the waiting list. Cardeon et al. (2009) employed a branch-and-price-based methodology 
to generate a comprehensive schedule of surgeons, operation rooms, instruments, and 
beds, while incorporating medical requirements, number of beds in recovery rooms, and 
different patterns of surgeries. A number of case studies have also been reported on the 
operating room scheduling problem (Dexter et al., 1999, 2001; Guinet and Chaabane, 
2003; Jebali et al., 2006; Lapierre et al., 1999; Marcon et al., 2003; Ozakarahan, 1989, 
1995; Verweij et al., 2003). The goal of operating room scheduling is to guarantee the 
availability of operating rooms over sufficient durations for each surgical group, and to 
schedule the operating rooms as efficiently as possible. There are a number of elements 
of the hospital staff scheduling problem that are stochastic in nature. This includes the 
time that a surgeon requires to perform an operation, and also, the arrival time of the 
patients. To offer a high quality of service, it is essential to allow sufficient time, albeit 
uncertain, for a procedure to be completed satisfactorily. Typically, hospitals have 
maintained records of time required for each surgical procedure to minimise the gap 
between the predetermined allotted time and the actual time required to perform the 
procedure. However, a better approach is to consider stochastic operation times a priori 
while generating a schedule. Belien and Demeulemeester (2007) have further considered 
two other sources of stochasticity: the number of patients for each operating room and the 
length of stay for each patient. Their work focused on the cyclic master surgery schedule 
based on two case studies pertaining to Belgian hospitals. A MIP model was formulated 
for this problem, which was solved using a simulated annealing approach. Lamiri et al. 
(2008) considered two types of demand for surgeries: elective surgeries and emergency 
surgeries. Emergency surgeries were assumed to be stochastic in nature and were 
required to be performed on the same day as identified. On the other hand, the time 
required to perform an elective surgery was assumed to be deterministic. The available 
aggregate operating room capacity (out of an aggregate amount of total available capacity 
required for emergency surgeries) was assumed to follow a known probability density 
function. A stochastic mathematical programming model was formulated for scheduling 
operating rooms, and a combination of the MCM and a MIP approach was adopted for 
the solution of the problem. Our work differs from that of Lamiri et al. (2008), and also 
from that presented in the other papers discussed above, in that: 

1 we consider the available resources as a set of multiple operating rooms (not as a 
single aggregate facility) 

2 we assume that the operation times are stochastic 

3 we use a mathematical programming-based approach that beneficially integrates a 
B&C algorithm with the MCM. 
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In a recent article, Denton et al. (2010) have addressed a problem of allocating surgeries 
to operating rooms in which the time to perform a surgery is assumed to be stochastic. 
They formulated the problem as a two-stage stochastic program to minimise the cost of 
utilising the operating rooms plus the expected overtime cost. They also considered the 
case of minimising the worst possible cost over all realisations of surgery durations 
within an uncertainty set. In another recent article, Batun et al. (2011) have considered a 
multi-operating room scheduling problem where the surgery durations are uncertain, but 
some portions of the surgeries can be performed in parallel (due to the availability of 
assistants), and the main decisions to be made concern the number of operating rooms to 
open, the assignment of surgeries to operating rooms, the sequence of surgeries within 
each operating room, and the times at which surgeons start their first surgery of the day, 
with the objective of minimising the total expected operating cost. A two-stage stochastic 
programming approach with recourse was used for solving the problem, where the 
authors employed valid inequalities to ensure second-stage feasibility of the first-stage 
solution. The objective function that we use is different from that considered by  
Denton et al. (2010) and Batun et al. (2011) in that we include revenues, costs, as well as 
penalties for overlapping operating room and surgeon assignments and for surgeries 
exceeding expected duration times, and we also demonstrate the effectiveness of a 
proposed methodology based on combining a B&C procedure with the MCM. Our 
motivation for including penalty costs is to minimise the overlapping of operations 
performed by a surgeon and also that of operations assigned to an operating room. Our 
aim is also to minimise under-assigned operation times for surgeons to perform 
operations. All of these conflicts are unavoidable in view of stochastic operation times, 
and so the inclusion of penalty costs helps find solutions that have a lower chance of 
becoming infeasible for scenarios realised in practice. Shylo et al. (2012) addressed batch 
operating room scheduling within a block booking system that maximises the expected 
utilisation of operating room resources subject to a set of probabilistic capacity 
constraints. As such, their problem is different from that considered in this paper. The 
reader is referred to the book edited by Denton (2013) for work in health care operations 
management. 

The remainder of this paper is organised as follows. In Section 2, we formulate a 
two-stage stochastic programming model for the SHSSP. In Section 3, we propose a 
hybrid B&C and MCM-based algorithm for the solution of this problem, which is 
theoretically assured to converge to an optimal solution. Related computational results 
are presented in Section 4. Finally, Section 5 provides a summary with some concluding 
remarks. 

2 Stochastic hospital staff scheduling problem 

The SHSSP problem that we address in this paper can be concisely defined as follows: 
Given a set of operating rooms and a set of surgeons, the probability distributions for the 
times taken by surgeons to perform operations, and the operations to be performed by 
each surgeon, determine the start time of each operation and the operating room in 
which to perform this operation by the designated surgeon so as to maximise the net 
profits earned by the hospital. We use the terms staff (or surgery groups) and surgeons 
interchangeably, and the same is true for resources and operating rooms. The hospital 
earns a profit from each operation that is performed. We assume that the time required to 
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perform an operation by a surgeon is stochastic, and that we have a discretised 
approximation of the joint probability density function as delineated by a set of scenarios 
S, where each scenario s ∈ S occurs with a probability ps with 1.s

s S

p
∈

=∑  Furthermore, 

penalty costs are introduced to reduce overlapping of operating room and surgeon 
assignments, overtime services of surgeons, and violations of pre-specified operation 
times. 

2.1 Model formulation for the SHSSP 

Consider the following notations: 

Indices and parameters 

i ∈ I set of surgeons 

j ∈ J set of operations to be performed 

m ∈ M set of operating rooms 

s ∈ S set of scenarios governing operating times 

TP overall planning period 

t = 1,…,TP set of time periods 

T threshold that defines regular time if t = 1,..,T and overtime if  
t = T + 1,…,TP 

rj profit accruing from operation j, ∀j ∈ J 

ci extra cost incurred per unit time if surgeon i works overtime, ∀i ∈ I 

J(i) set of operations that surgeon i can perform, ∀i ∈ I 

I(j) set of surgeons who can perform operation j, ∀j ∈ J 

1ijsd ≥  length of operation time required by surgeon i to perform operation j under 
scenario s, ∀i ∈ I, j ∈ J(i), s ∈ S  

ps probability of occurrence of scenario s, s ∈ S 

eM penalty per unit for assigning more than one operation at a time in an 
operating room 

eI penalty per unit for assigning more than one operation at a time to a 
surgeon 

eD penalty per unit for violating pre-specified operation times. 
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Decision variables 
xijmt binary variable, which equals 1 if surgeon i is scheduled to start operation j 

in operating room m during period t, and 0, otherwise, ∀i ∈ I, j ∈ J(i),  
m ∈ M, t = 1,…, TP 

yijmts binary variable, which equals 1 if surgeon i performs operation j in 
operating room m during period t, under scenario s, and equals 0 
otherwise, ∀i ∈ I, j ∈ J(i), m ∈ M, t = 1,…,TP, s ∈ S 

M
mtsSw  continuous variable representing the excess number of operations 

(exceeding one) that are assigned to operating room m during period t 
under scenario s, ∀m ∈ M, t = 1,…,TP, s ∈ S 

I
itsw  continuous variable representing the excess number of operations 

(exceeding one) that are assigned to surgeon i during period t under 
scenario s, ∀i ∈ I, t = 1,…,TP, s ∈ S 

wijs continuous slack variable representing the duration of operation time for 
surgeon i to perform operation j under scenario s, ∀i ∈ I, j ∈ J(i), s ∈ S 

x vector of first stage variables, xijmt, ∀i ∈ I, j ∈ J(i), m ∈ M, t = 1,…,TP 

fs(x) recourse function (as defined below) for scenario s, ∀s ∈ S 

Exp[ ( )]f x  expected cost for operations performed during overtime. 

We use a two-stage approach for the SHSSP, where the variables are split into first and 
second stage variables. The principal xijmt-variables determine the starting time and the 
operating room for an operation, and are hence designated as the first stage variables. The 
yijmts-variables determine the subsequent time intervals over which surgeons perform 
operations, and together with the other continuous overlap and slack/surplus w-variables, 
jointly constitute the second stage variables. 

2.1.1 SHSSP1 

( ) 1

Maximise Exp ( )
TP

j ijmt
i I j J i m M t

r x f x
∈ ∈ ∈ =

⎡ ⎤− ⎣ ⎦∑ ∑ ∑∑  (2.1a) 

( ) 1

subject to 1,
TP

ijmt
i I j m M t

x j J
∈ ∈ =

≤ ∀ ∈∑ ∑∑  (2.1b) 

{0, 1}, , ( ), , 1, , .ijmtx i I j J i m M t TP∈ ∀ ∈ ∈ ∈ = …  (2.1c) 

The objective function in (2.1a) maximises the net profit minus the expected penalty 
costs as detailed below. Constraint (2.1b) requires each potential operation to be 
performed at most once, and constraint (2.1c) enforces binary restrictions on the first 
stage xijmt variables. The second stage recourse model for each scenario s, which 
evaluates the recourse function fs(x), ∀s ∈ S, is given as follows: 



   

 

   

   
 

   

   

 

   

   216 S.C. Sarin et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Recourse model for SHSSP1 

( )
( ) 1

1 ( )

( ) Minimise  

 

TP

s i ijmts
i I j J i m M t T

TP
M M I I D

mts its ijs
t m M i I i I j J i

f x c y

e w e w e w

∈ ∈ ∈ = +

= ∈ ∈ ∈ ∈

⎡ ⎤
≡ ⎢ ⎥

⎢ ⎥⎣ ⎦

⎛ ⎞
+ + +⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
 (2.2a) 

( )

subject to 1, , 1, ,M
ijmts mts

i I j J i

y w m M t TP
∈ ∈

− ≤ ∀ ∈ =∑ ∑ …  (2.2b) 

( )

1, , 1, ,I
ijmts its

j J i m M

y w i I t TP
∈ ∈

− ≤ ∀ ∈ =∑ ∑ …  (2.2c) 

1 1, , ( ),ijm s ijmy x i I j J i m M= ∀ ∈ ∈ ∈  (2.2d) 

( 1) , , ( ), , 2, ,ijmts ijm t s ijmty y x i I j J i m M t TP−− ≤ ∀ ∈ ∈ ∈ = …  (2.2e) 

1 1

, , ( )
TP TP

ijmts ijs ijs ijmt
m M t m M t

y w d x i I j J i
∈ = ∈ =

+ ≥ ∀ ∈ ∈∑∑ ∑∑  (2.2f) 

{0, 1}, , ( ), , 1, ,ijmtsy i I j J i m M t TP∈ ∀ ∈ ∈ ∈ = …  (2.2g) 

0, , 1, ,M
mtsw m M t TP≥ ∀ ∈ = …  (2.2h) 

0, , 1, ,I
itsw m M t TP≥ ∀ ∈ = …  (2.2i) 

0, , ( ).ijsw i I j J i≥ ∀ ∈ ∈  (2.2j) 

The objective function (2.2a) records the total overtime surgery cost plus the respective 
penalty costs for overlapping operating room usage, overlapping surgeon usage, and 
under-assigned surgery times. Constraints (2.2b), (2.2c), (2.2h), (2.2i), along with the 
objective function, assert that 

( )

( )

max 0, 1 , , 1, , , and

max 0, 1 ,

M
mts ijmts

i I j J i

I
ijmtsits

j J i m M

w y m M t TP s S

w y

∈ ∈

∈ ∈

⎧ ⎫⎪ ⎪= − ∀ ∈ = ∈⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑

∑ ∑

…

 (2.3a) 

respectively. In other words, M
mtsw  and I

itsw  become positive once multiple operations are 
assigned at a time to an operating room and a surgeon, respectively, for a given scenario. 
Also, constraints (2.2f) and (2.2j) along with the objective function yield 

1 1

max 0, , , ( ), .
TP TP

ijs ijs ijmt ijmts
m M t m M t

w d x y i I j J i s S
∈ = ∈ =

⎧ ⎫⎪ ⎪= − ∀ ∈ ∈ ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑ ∑∑  (2.3b) 
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When 
1 1

,
TP TP

ijmts ijs ijmt
m M t m M t

y d x
∈ = ∈ =

<∑∑ ∑∑  i.e., the operation time assigned to a surgeon i to 

perform operation j under scenario s is less than dijs, given that this surgeon-operation 
assignment is made, then wijs becomes positive. Note that for relatively large values of eM 
and eI, the M

mtsw  – and I
itsw  – variables will take a value of zero, which would preclude 

any overlaps among assignments of surgeons and operating rooms. However, for more 
representative penalty cost parameters, even though some M

mtsw  – and I
itsw  – variables 

might be positive, thereby implying overlaps in the assignments of surgeons and 
operating rooms, this might increase the net profit for the hospital. In the same vein, 
profits can potentially increase by permitting the scheduling of additional surgeries when 
wijs > 0, albeit at a penalty cost. Constraint (2.2d) requires surgeon i to be engaged in 
performing operation j in room m during the first period if and only if xijm1 = 1. For 
subsequent periods t = 2,…,TP, and for each i ∈ I, j ∈ J(i), and m ∈ M, Constraint (2.2e) 
assures that if yijm(t–1)s = 0 and yijmts = 1, then it must be that xijmt = 1. Hence, in light of 
(2.1b), the stream of yijmts-variables over t = 1,…,TP can only follow the pattern of having 
at most a single string of consecutive ones, with the remaining variables being zeros. 

Accordingly, Exp[ ( )]f x  can be expressed as follows: 

( ) 1

1

( )

( ) ( )

,

TP

i s ijmts
i I j J i m M t T s S

TP
M M I Is s mts its

s S t m M i Is
Ds S ijs

i I j J i

c p y

Exp f x p f x e w e w
p

e w

∈ ∈ ∈ = + ∈

∈ = ∈ ∈

∈

∈ ∈

⎧ ⎡ ⎤⎛ ⎞
⎪ ⎢ ⎥⎜ ⎟⎜ ⎟⎪ ⎢ ⎥⎝ ⎠⎣ ⎦
⎪
⎪ ⎡ ⎤⎛ ⎞⎡ ⎤ = = ⎨⎣ ⎦ +⎢ ⎥⎜ ⎟⎜ ⎟⎪ ⎢ ⎥⎝ ⎠+⎪ ⎢ ⎥
⎪ +⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦⎩

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
∑

∑ ∑

 (2.4) 

where the y- and w-variables represent optimal values to the recourse model given by 
(2.2a)–(2.2j), for each s ∈ S. Correspondingly, the overall deterministic equivalent of the 
two-stage stochastic program is given as follows: 

2.1.2 SHSSP2 

( ) 1 ( ) 1

1 ( )

Maximise
TP TP

j ijmt i s ijmts
i I j J i m M t i I j J i m M t T s S

TP
M M I I D

s mts ijsits
s S t m M i I i I j J i

r x c p y

p e w e w e w

∈ ∈ ∈ = ∈ ∈ ∈ = + ∈

∈ = ∈ ∈ ∈ ∈

⎡ ⎤⎛ ⎞ ⎛ ⎞
− ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦

⎡ ⎤⎛ ⎞
− + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ ∑∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑
 (2.5a) 

( ) 1

subject to 1,
TP

ijmt
i I j m M t

x j J
∈ ∈ =

≤ ∀ ∈∑ ∑∑  (2.5b) 

( )

1, , 1, , ,M
ijmts mts

i I j J i

y w m M t TP s S
∈ ∈

− ≤ ∀ ∈ = ∈∑ ∑ …  (2.5c) 
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( )

1, , 1, , ,I
ijmts its

j J i m M

y w i I t TP s S
∈ ∈

− ≤ ∀ ∈ = ∈∑ ∑ …  (2.5d) 

1 1, , ( ), ,ijm s ijmy x i I j J i m M s S= ∀ ∈ ∈ ∈ ∈  (2.5e) 

( 1) , , ( ), ,
2, , ,

ijmts ijm t s ijmty y x i I j J i m M
t TP s S

−− ≤ ∀ ∈ ∈ ∈
= ∈…

 (2.5f) 

1 1

, , ( ),
TP TP

ijmts ijs ijs ijmt
m M t m M t

y w d x i I j J i s S
∈ = ∈ =

+ ≥ ∀ ∈ ∈ ∈∑∑ ∑∑  (2.5g) 

{0, 1}, , ( ), , 1, ,ijmtx i I j J i m M t TP∈ ∀ ∈ ∈ ∈ = …  (2.5h) 

{0, 1}, , ( ), ,
1, , ,

ijmtsy i I j J i m M
t TP s S

∈ ∀ ∈ ∈ ∈
= ∈…

 (2.5i) 

0, , 1, , ,M
mtsw m M t TP s S≥ ∀ ∈ = ∈…  (2.5j) 

0, , 1, , ,I
itsw i I t TP s S≥ ∀ ∈ = ∈…  (2.5k) 

0, , ( ), .ijsw i I j J i s S≥ ∀ ∈ ∈ ∈  (2.5l) 

The formulated two-stage stochastic program is a complete recourse model in the sense 
that for any binary x-vector, there exists a feasible solution to (2.2b)–(2.2j). This is 
established below. 

Proposition 1: The formulated two-stage stochastic program is a complete recourse 
model. 

Proof: Let x be any binary vector. For each s ∈ S, by setting yijmts = xijmt, ∀i ∈ I, j ∈ J(i), 
m ∈ M, and t = 1,…,TP, and then computing the w-variables accordingly via equations 
(2.3a) and (2.3b), we obtain a feasible solution to (2.2b)–(2.2j). Hence, the two-stage 
stochastic program SHSSP1 (or SHSSP2) is a complete recourse model.  

2.2 Performance enhancing constraints 

2.2.1 Symmetry breaking constraints 
Note that the formulation SHSSP2 can be improved by inhibiting the occurrence of 
symmetric solutions [which can otherwise severely impair the performance of  
branch-and-bound/cut approaches due to the redundant enumeration of symmetric 
reflections of essentially identical solutions – see Sherali and Smith (2002), for example]. 
Problem SHSSP2 has an inherent symmetry with respect to rooms m ∈ M, which can be 
alleviated by imposing the following set of hierarchical constraints: 

( 1)
( ) 1 ( ) 1

, 1, ,| | 1
TP TP

j ijmt j ij m t
i I j J i t i I j J i t

r x r x m M+
∈ ∈ = ∈ ∈ =

≥ ∀ ∈ −∑ ∑ ∑ ∑ ∑ ∑ …  (2.5m) 
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Observe that constraint (2.5m) requires a non-increasing hierarchy of profits generated 
via the rooms labelled as m = 1,…,| M |. We assume henceforth that SHSSP1 and 
SHSSP2 additionally accommodate constraint (2.5m). 

Similarly, symmetry can be broken with respect to operating hours. For each  
(i, j) ∈ I × J, let δ ≡ (i – 1)| J | + j. Hence, δ = 1, 2,…,| I | | J | continuously indexes the 
combinations (i, j) for i = 1, 2,…,| I |, j = 1, 2,…,| J |. Let Δ denote the set of (δ1, δ2) such 
that δ1 < δ2 and both δ1 and δ2 represent viable assignments of surgeons to operations and 
let min

ijd  denote the minimum dedicated time (without overlaps) to be allotted for surgeon 
i to perform operation j. Then, we can assert that for each room m ∈ M, if both δ1 and δ2 
are performed in room m for (δ1, δ2) ∈ Δ, then δ1 must precede δ2. This can be stated as 
follows: 

( )

1 2 1 21

1 2 1

1 1 1 1

1 1

1 2

2

i.e., ( ) ( ) 2

for all , , Δ.

TP TP TP TP
min

δ mt δ mt δ mt δ mtδ
t t t t

TP TP
min

δ mt δ mt δ
t t

tx d tx TP x x

t TP x t TP x TP d

m M δ δ

= = = =

= =

⎡ ⎤
+ − ≤ − −⎢ ⎥

⎢ ⎥⎣ ⎦

+ − − ≤ −

∈ ∈

∑ ∑ ∑ ∑

∑ ∑  (2.5n) 

2.2.2 Zeroing-out redundant variables 

Given the restriction on min
ijd  and noting constraint (2.5n), we can additionally assert the 

following: 

0,  ,  ( ),  ,  2, ,min
ijmt ijx i I j J i m M t TP d TP≡ ∀ ∈ ∀ ∈ ∈ = − + …  (2.5o) 

2.2.3 Tightening constraints 
Likewise, the (recourse) model can be tightened by incorporating the following 
constraint: 

( )min

1

, ( ),
TP

ijs ijs ijmtij
m M t

w d d x i I j J i s S
∈ =

≤ − ∀ ∈ ∀ ∈ ∀ ∈∑∑  (2.5p) 

3 An integrated B&C and MCM-based approach 

In this section, we propose a MCM-based approach for solving SHSSP2, where the sub-
problems are solved using a standard B&C methodology, as for example, that 
implemented in the commercial software CPLEX. The MCM is known for its 
effectiveness in solving stochastic programming problems because it employs only a 
subset of scenarios. To design this approach, let K and N denote the number of 
replications and the number of independent random scenarios in each replication, 
respectively. We can express the kth replication of SHSSP2 as follows: 
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3.1 kth replication of SHSSP2 

( ) 1 ( ) 1

1 ( )

1Maximise

1

k

k

TP TP

j ijmt i ijmts
i I j J i m M t i I j J i m M t T s S

TP
M M I I D

mts ijsits
t m M i I i I j J is S

r x c y
N

e w e w e w
N

∈ ∈ ∈ = ∈ ∈ ∈ = + ∈

= ∈ ∈ ∈ ∈∈

⎡ ⎤⎛ ⎞⎛ ⎞
− ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
− + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ ∑∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑
 (3.1a) 

( ) 1

subject to 1,
TP

ijmt
i I j m M t

x j J
∈ ∈ =

≤ ∀ ∈∑ ∑∑  (3.1b) 

( )

1, , 1, , ,M k
ijmts mts

i I j J i

y w m M t TP s S
∈ ∈

− ≤ ∀ ∈ = ∈∑ ∑ …  (3.1c) 

( )

1, , 1, , ,I k
ijmts its

j J i m M

y w i I t TP s S
∈ ∈

− ≤ ∀ ∈ = ∈∑ ∑ …  (3.1d) 

1 1, , ( ), , k
ijm s ijmy x i I j J i m M s S= ∀ ∈ ∈ ∈ ∈  (3.1e) 

( 1) , , ( ), ,
2, , ,

ijmts ijm t s ijmt

k

y y x i I j J i m M
t TP s S

−− ≤ ∀ ∈ ∈ ∈
= ∈…

 (3.1f) 

1 1

, , ( ),
TP TP

k
ijmts ijs ijs ijmt

m M t m M t

y w d x i I j J i s S
∈ = ∈ =

+ ≥ ∀ ∈ ∈ ∈∑∑ ∑∑  (3.1g) 

( 1)
( ) 1 ( ) 1

, 1, ,| | 1
TP TP

j ijmt j ij m t
i I j J i t i I j J i t

r x r x m M+
∈ ∈ = ∈ ∈ =

≥ ∀ ∈ −∑ ∑ ∑ ∑ ∑ ∑ …  (3.1h) 

( )

1 2 1
1 1

1 2

( ) ( ) 2

, Δ,

TP TP
min

δ mt δ mt δ
t t

t TP x t TP x TP d

δ δ m M
= =

+ − − ≤ −

∀ ∈ ∈

∑ ∑  (3.1i) 

0, , ( ), ,  
2, ,

ijmt

min
ij

x i I j J i m M
t TP d TP

≡ ∀ ∈ ∀ ∈ ∈
= − + …

 (3.1j) 

( )
1

, , ( ),
TP

min k
ijs ijs ijmtij

m M t

w d d x i I j J i s S
∈ =

≤ − ∀ ∈ ∀ ∈ ∀ ∈∑∑  (3.1k) 

{0, 1}, , ( ), , 1, ,ijmtx i I j J i m M t TP∈ ∀ ∈ ∈ ∈ = …  (3.1l) 

{0, 1}, , ( ), , 1, , , k
ijmtsy i I j J i m M t TP s S∈ ∀ ∈ ∈ ∈ = ∈…  (3.1m) 

0, , 1, , ,M k
mtsw m M t TP s S≥ ∀ ∈ = ∈…  (3.1n) 

0, , 1, , ,I k
itsw i I t TP s S≥ ∀ ∈ = ∈…  (3.1o) 
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0, , ( ), k
ijsw i I j J i s S≥ ∀ ∈ ∈ ∈  (3.1p) 

where 1 2{ , , , }k k k k
NS s s s≡ …  is the set of N scenarios that are randomly generated for  

the kth replication according to the specified discrete probability distribution. Note  
that constraints (3.1g)–(3.1k) correspond to the performance-enhancing constraints 
(2.5m)–(2.5p) in the previous section. 

Proposition 2: The optimal solution obtained for the formulation (3.1) designated as the 
kth replication of SHSSP2 can be augmented to derive a complete feasible solution to the 
original formulation SHSSP2. 

Proof: By fixing the x-variables according to the solution obtained by solving the kth 
replication of SHSSP2, the resultant problem SHSSP2 decomposes by scenarios, each of 
which is feasible by Proposition 1, and can be optimised over the remaining scenarios  
s ∈ S \ Sk, noting that the model directly determines the corresponding optimal solutions 
for s ∈ Sk.  

Now, consider the following notation for implementing the proposed MCM-based 
solution approach for the SHSSP’: 

ˆ ˆ{( ) }k k
ijmtN NX x=  vector of xijmt-variables that represents an optimal solution to the  

kth replication of SHSSP2 

ˆ ˆ{( ) }k k
ijmtsN NY y=  vector of yijmts-variables that represents an optimal solution to the 

kth replication of SHSSP2 

ˆ ˆ( ) {( ) }I k I k
itsN NW w=  vector of -variablesI

itsw  that represents an optimal solution to the 
kth replication of SHSSP2 

ˆ ˆ( ) {( ) }M k M k
mtsN NW w=  vector of -variablesM

mtsw  that represents an optimal solution to the 
kth replication of SHSSP2 

ˆ ˆ( ) {( ) }k k
ijsN NW w=  vector of wijs-variables that represents an optimal solution to the  

kth replication of SHSSP2 

X* vector of xijmt-variables that represents an optimal solution to 
SHSSP2 

Y* vector of yijmts-variables that represents an optimal solution to 
SHSSP2 

WI* vector of -variablesI
itsw  that represents an optimal solution to 

SHSSP2 

WM* vector of -variablesM
mtsw  that represents an optimal solution to 

SHSSP2 

W* vector of wijs-variables that represents an optimal solution to 
SHSSP2 
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( )k
Nh ⋅  objective function for the kth replication of SHSSP2 

( )h ⋅  objective function for SHSSP2 

ˆ( )k k
N Nh X  optimal objective function value for the kth replication of SHSSP2 

ˆ( )k
Nh X  ‘true’ objective function value corresponding to ˆ k

NX  for SHSSP2 
(which could, in theory, be derived by determining an optimal 
completion to ˆ k

NX  as alluded to in the proof of Proposition 2) 

h(X*) ‘true’ (unknown) optimal objective function value for SHSSP2 

Nh  sample average (mean) of 1 1 2 2ˆ ˆ ˆ( ), ( ), , ( )K K
N N N N N Nh X h X h X  

( )NV h  sample variance of 1 1 2 2ˆ ˆ ˆ( ), ( ), , ( )K K
N N N N N Nh X h X h X  

N  number of scenarios used to determine an unbiased estimate of the 
true objective function value once a solution is found using N 
scenarios, where N N>>  

ˆ( )k k
NNh X  unbiased estimate of ˆ( ),k k

NNh X  given by the sample average of 
ˆ( ),  1, , ,k k

Nnh X n N= …  where ˆ( )k k
Nnh X  is the value of ˆ( )k

Nh X  
obtained via SHSSP2 by fixing x ≡ ˆ k

NX  and using scenario n  by 
itself 

ˆ( ( ))k k
NNV h X  sample variance of ˆ( ),  1,..., ,k k

Nnh X n N=  as given by 

2

1

1 ˆ ˆ[ ( ( ) ( )) ]
( 1)

N
k k k k

N Nn N
n

h X h X
N N =

−
− ∑  

*ˆ( )NX  estimate for a ‘true’ optimal solution that is obtained from the set 
of optimal solutions to each replication as determined by: 

*
ˆ , 1,...,

ˆ ˆ( ) arg max { ( )}
k
N

k k
N NN

X k K
X h X

=
∈  

*ˆ(( ) )NNh X  estimate for the ‘true’ optimal solution value as determined by 
*ˆ( ) ,NX  where *ˆ ˆ(( ) ) max{ ( ) : 1, , }k k

NN NNh X h X k K≡ = …  

*ˆ[ (( ) )]NNV h X  ˆ( ( ))k k
NNV h X  corresponding to k ∈ {1,…,K} for which 

*ˆ ˆ( ) ( )k
N NX X=  
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The following results establish the relevant properties of the MCM approach, which we 
state without proofs since identical results are proven in Mak et al. (1999), Shapiro (2001, 
2003), and Verweij et al. (2003). 

1 Because SHSSP2 is a maximisation problem, the optimal objective function value of 
the kth replication of SHSSP2, ˆ( ),k k

N Nh X  provides an unbiased estimate of an upper 
bound for the “true” optimal objective function value of SHSSP2, h(X*). 

2 As N → ∞, ˆ[ ( )]k k
N NE h X  approaches h(X*) from above. Moreover, *ˆ( ) ( ),k k

N Nh X h X→  
*( ),Nh h X→  and * *ˆ(( ) ) ( ).Nh X h X→  Furthermore, * *ˆ( )NX X→  if X* is unique. 

3 As K → ∞, Nh  provides an unbiased estimate of an upper bound for the ‘true’ 
optimal objective function value of SHSSP2. 

4 As ,N → ∞  ˆ( )k k
NNh X  converges to ˆ( ),k

Nh X  the objective function value of ˆ k
NX  in 

SHSSP2, from above with probability one, and so, when N → ∞ with ,N N>  we 
get *ˆ( ) ( ).k k

NNh X h X→  

5 By (3) and (4), *ˆ(( ) ) 0N NNh h X− →  is an unbiased estimate of the gap between 

upper and lower bounds. Furthermore, by (2), *ˆ(( ) ) 0N NNh h X− →  as N → ∞. 

An unbiased estimate of the variance of the optimality gap is given by 

( )( ) [ ] ( )( )* *ˆ ˆ .N N N NN NV h h X V h V h X⎡ ⎤ ⎡ ⎤− = +⎣ ⎦ ⎣ ⎦  (3.2) 

The 100(1 – α) % confidence interval on the optimality gap is therefore given by the 
t-distribution with (K-1) degree of freedom as follows: 

( )( ){ } [ ] ( )( )* *
1 , 1ˆ ˆ0, max 0, N N K N NN Nh h X t V h V h X K− −

⎡ ⎤⎡ ⎤− + +⎢ ⎥⎣ ⎦⎣ ⎦α  (3.3) 

From above, an unbiased estimator of the relative optimality gap is given by, 

( )( ) ( )( )* *ˆ ˆ
1 .N N NN N

N N

h h X h X
h h

−
= −  (3.4) 

We refer to the expression in (3.4) as the tolerance ratio. The exterior sampling method 
suggested by Shapiro (2001, 2003) and Verweij et al. (2003) is adopted to build a subset 
of scenarios for each replication in the MCM approach as specified in the following 
stepwise procedure, where for each k = 1,…,K, the kth replication of SHSSP2 is solved 
via a B&C algorithm as provided in CPLEX using the default cut generation option. 
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Step 1 Specify values for N, ,N  and K. Set k = 1. 

Step 2 Generate 1 2{ , , , }k k k k
NS s s s= …  using a random number generator. 

Step 3 Formulate the kth replication of SHSSP2 using Sk, and solve it. Store the 
resultant solution ˆ k

NX  and its objective value ˆ( ).k k
N Nh X  

Step 4 Generate 1 2{ , , , },k k k k
NS s s s= …  and compute ˆ( )k k

NNh X  and ˆ( ( )).k k
NNV h X  

Step 5 If k = K, go to step 6; otherwise, set k ← k + 1, and go to step 2. 

Step 6 Compute Nh  and ( ).NV h  

Step 7 Determine *ˆ( ) .NX  If 
*ˆ(( ) )0 1 ,NN

N

h X ε
h

≤ − ≤  go to step 8; otherwise, increase 

the values of N, ,N  and K, and go to step 2 with k = 1. Note that, we reject the 
results if *ˆ(( ) ) 0,N NNh X h− >  that is, we restart the process with increased 

values of N, ,N  and K if we end up with an unbiased estimate of the lower 
bound of the ‘true’ optimal objective function value that is greater than that of 
the upper bound. 

Step 8 Estimate the 100(1 – α) % confidence interval using equation (3.3), and stop. 

Note that due to the decision in step 7, this equation becomes as follows: 

( )( ) [ ] ( )( )* *
1 , 1ˆ ˆ0, N N K N NN Nh h X t V h V h X K− −

⎡ ⎤⎡ ⎤− + +⎢ ⎥⎣ ⎦⎣ ⎦α  (3.3) 

In steps 1, 2, and 3, we construct and solve the kth replication of SHSSP2. The statistical 
properties of the solutions obtained are then checked to verify convergence and to decide 
on whether to stop or to continue sampling further as described in the remaining steps. 
The solution quality improves asymptotically toward the optimal values with increments 
in the values of N, ,N  and K, but the CPU time also thus increases. Based on the results 
of a preliminary investigation conducted to study this trade-off, the values of N, ,N  and 
K were varied as follows: starting with the values of (N, ,N  K) = (0.125| S |, 0.25| S |, 2), 
whenever the optimality gap at the qth iteration does not satisfy the termination criterion 
at step 7, we increase K to 2 + q for the (q + 1)th iteration, while holding N and N  fixed. 
A flowchart of this integrated B&C and MXM-based algorithm is given in Figure 1. 
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Figure 1 Flowchart of the integrated B&C and MCM-based algorithm 

 Start 

Specify values for N, ,N  and K. Set k = 1. 

Generate 1 2{ , , , }k k k k
NS s s s= …  using a random number generator. 

Formulate the kth replication of SHSSP2 using Sk, and  
solve it using CPLEX. Obtain ˆ k

NX  and ˆ( ).k k
N Nh X  

Compute Nh  and ( ).NV h  

Compute *
ˆ , 1, ,

ˆ ˆ( ) argmax { ( )}
N

k k
N NN

X k K
X h X

=
=

…
 

Estimate 100(1 – α) % confidence interval using equation (3.3) 

Stop. 

Set k = k + 1 k = K? 
No 

Yes 

Is 
*ˆ(( ) )1 ?NN

N

h X ε
h

− ≤  

Generate 1 2{ , , , },k k k k
NS s s s= …  and compute ˆ( )k k

NNh X  and ˆ( ( )).k k
NNV h X  

No 

Increase values of  
N, ,N  and K; Set k = 1. 
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4 Computational results 

In this section, we report computational results for two groups of experiments. In the first 
group, we justify the use of the MCM for deriving near-optimal solutions to the SHSSP. 
In particular, we demonstrate that MCM efficiently determines solutions that exhibit a 
small gap between the unbiased estimates of the lower and upper bounds on the ‘true’ 
optimal objective function value. We use the B&C method of CPLEX to obtain the  
‘true’ objective function value, h(X*), and evaluate the quality of solutions obtained  

by the MCM using the near-optimality criterion ratio, 
*

*

ˆ( ) ) .
( )

NNh X
h X

 The second group of 

experiments considers problem instances that CPLEX is unable to solve because of 
excessive memory or CPU time requirements. For these problems, we compute  
100(1 – α) % confidence intervals on the resulting optimality gaps using the proposed 
MCM approach in order to evaluate solution quality. Note that we accept the results of an 
iteration when the tolerance ratio given by (3.4) falls within [0, ε], where 0 < ε < 1. All 
runs for both the groups of experiments were made on an Intel® Core™ i7-3770 CPU 
3.40 GHz computer having 8.00 GB of RAM, and were implemented using CPLEX 12.5 
built in Java 1.7.0_10, where the software embedding Java is NetBeans IDE 7.2.1. 

Note that if the initial and final values of (N, ,N  K) are identical for an instance, this 
means that the stopping criterion at Step 7 was satisfied after the first loop through the 
procedure for that instance. Also, note that *ˆ(( ) )NNh X  is an unbiased estimate of the 
lower bound of the ‘true’ optimal objective function value, but there is still a possibility 
that we might end up with a biased subset of scenarios even though the stopping criterion 

is satisfied, and in that case, 
*

*

ˆ(( ) )
( )

NNh X
h X

 can be greater than one. 

Table 1 presents the results for our first group of experiments. The data for the 
problem instances specified in Table 1 is as follows: 

Problem instance 1 2 3 4 5 6 7 8 9 10 
|M| 2 2 2 2 2 2 2 2 2 2 
|I| 5 5 5 5 5 5 5 5 5 5 
|J| 5 6 7 8 9 10 11 12 13 14 
|S| 32 32 32 32 32 32 32 32 32 32 

 

Problem instance 11 12 13 14 15 16 17 18 19 20 21 
|M| 2 2 2 2 2 3 3 3 3 3 3 
|I| 5 5 5 5 5 6 6 6 6 6 6 
|J| 15 16 17 18 19 6 7 8 9 10 11 
|S| 32 32 32 32 32 32 32 32 32 32 32 

 

 

 



   

 

   

   
 

   

   

 

   

    A hospital staff scheduling problem under stochastic operation times 227    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 1 Results on the performances of the B&C and MCM 
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Table 2 Results for large-sized problem instances by the MCM 
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The following key observations are evident from Table 1. First, the problem instances 
that are highlighted (instances 4, 6, 8, 11, 12, and 17–21) required extra replications 
(additional loops through steps 2–7). In particular, instances 4, 8, 17, and 18 required one 
more loop, instances 6, 12, 19, and 21 required two more loops, and instances 11 and 20 
required three more loops. Second, the worst tolerance ratio obtained was 0.049 (for 
instances 3 and 7). The average value of the tolerance ratio was 0.014, which indicates 
that the difference between the lower and upper bounds at termination was about 1.4% on 
average. Third, the worst near-optimality criterion obtained was 1.04 (for instance 5), 
where the average near-optimality criterion value was 1.002, which implies that the 
difference between the true optimal objective function value obtained using CPLEX and 
the estimated optimal objective function value obtained by MCM is about 0.5% on 
average. For 19 out of the 21 instances, the MCM approach consumed less CPU time 
than CPLEX in obtaining a solution. Not counting the case of instances 5 and 6 for  
which MCM required larger CPU times as compared with that required by CPLEX, the 
average CPU time required by MCM was 203 seconds while that required by CPLEX 
was 6,830 seconds. 

Table 2 presents results for the second group of instances for which an optimal 
solution could not be obtained by the direct B&C method implemented within CPLEX 
for a time limit of 120,000 seconds. Note that the worst termination tolerance ratio 
obtained was 0.047 (for instance 4), and the average of these values over all instances 
was 0.006, which implies that the difference between the unbiased estimates of lower and 
upper bounds is 0.6% on average. The width of the 95% confidence interval on the 
optimality gap (see equation (3.3), i.e., the width of the confidence interval on the 
unknown value of * *ˆ[ ( ) ( ) ]Nh X h X−  is presented in the penultimate column of Table 2 

as a percentage of the lower bound estimate *ˆ( ( ) ).NNh X  The average of these values is 
11.311%, which indicates that the confidence interval on the optimality gap is within 
12% of the lower bound, on average. The smallest width of this confidence interval is 
1.432% (for instance 4) while the largest width is 28.632% (for instance 6). Six problem 
instances (namely, 3, 4, 8, 9, 10, and 15), which are highlighted in Table 2, needed 
additional loops through steps 2–7, and they also indicate smaller confidence intervals. 
Hence, even though the tolerance ratio obtained by our method is very small, a smaller 
confidence interval can be obtained by using a larger value of K, albeit at the cost of 
increased CPU times. Note that the maximum of the CPU time values shown in the last 
column of Table 2 is within 1,500 seconds. 

5 Concluding remarks 

We have addressed in this paper a two-stage stochastic programming approach for a 
SHSSP where the surgical operating times are probabilistic. In view of the fact that the 
number of underlying scenarios in a discretised representation of the joint probability 
distribution of operating times can grow rapidly with the size of the problem, we utilised 
a hybridised B&C-MCM-based approach to solve this problem, where the reduced set of 
scenario sub-problems generated by the MCM technique are iteratively solved using the 
B&C algorithm implemented within CPLEX. Unbiased estimates of lower and upper 
bounds on the optimal objective function value were used to design a suitable stopping 
criterion. In addition, a 100(1 – α)% confidence interval on the optimality gap at 
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termination was derived. For comparative purposes, using relatively small-sized 
problems that could be solved to optimality by CPLEX, our computational results 
revealed that the proposed hybridised B&C-MCM approach can solve problems several 
times faster (by a factor of 33.7 on average, barring an outlier) than simply resorting to 
the B&C method of CPLEX alone. The relative difference between the lower and upper 
bounds obtained by our method was 1.4% on average, and the relative difference between 
the optimal objective function value and the best objective function value obtained by our 
method was about 0.5% on average. For larger-sized problems that could not be solved 
by CPLEX due to out-of-memory difficulties or excessive computational times, our 
method generated solutions with the relative difference between the unbiased estimates of 
lower and upper bounds being about 0.6% on average. Also, the average percentage 
confidence interval on the optimality gap obtained for these problems was 11.311%. 
Hence, the proposed hybridised B&C-MCM approach offers an effective solution 
methodology for the SHSSP addressed in this paper. 
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