

 110 Int. J. Planning and Scheduling, Vol. 2, No. 2, 2015

 Copyright © 2015 Inderscience Enterprises Ltd.

A random keys genetic algorithm for a bicriterion
project selection and scheduling problem

Natalia Summerville*
Advanced Analytics and Optimization Services Group,
SAS Institute,
100 SAS Campus Drive, Cary, NC, 27513, USA
Email: Natalia.Summerville@sas.com
*Corresponding author

Reha Uzsoy
Edward P. Fitts Department of Industrial and Systems Engineering,
North Carolina State University (NCSU),
Campus Box 7906, Raleigh, NC 27695-7906, USA
Email: ruzsoy@ncsu.edu

Juan Gaytán
School of Engineering,
Mexico State University,
Cerro de Coatepec, Ciudad Universitaria,
Toluca México, CP 50110, Mexico
Email: jgi@uaemex.mx

Abstract: The project selection and scheduling problem involves the
allocation of limited resources to competing projects over time to optimise a
given objective function. However, in practical applications, multiple criteria
need to be considered, leading us to formulate the problem as a multiple
objective combinatorial optimisation (MOCO) model. Activities are subject to
precedence constraints, as well as a budget limiting the capital available in each
planning period. Interdependencies between projects by which the selection of
specific subsets of projects may result in cost savings are also represented. We
propose a genetic algorithm incorporating random keys and an efficient
decoding procedure into the well-known NSGA-II procedure. The performance
of this algorithm is evaluated in extensive computational experiments
comparing the approximations of the Pareto-optimal set it obtains to those from
NSGA-II.

Keywords: multicriteria optimisation; multiobjective optimisation; genetic
algorithms; random keys; project scheduling; metaheuristics; NSGA-II;
efficient frontier; evolutionary algorithms.

Reference to this paper should be made as follows: Summerville, N., Uzsoy, R.
and Gaytán, J. (2015) ‘A random keys genetic algorithm for a bicriterion
project selection and scheduling problem’, Int. J. Planning and Scheduling,
Vol. 2, No. 2, pp.110–133.

 A random keys genetic algorithm for a bicriterion project selection 111

Biographical notes: Natalia Summerville obtained her PhD in Operations
Research from North Carolina State University as well as PhD in Industrial
Engineering from Monterrey Tech., Toluca Campus. She was the Director of
Undergraduate Studies in Industrial Engineering at Tecnológico de Monterrey,
Morelia Campus for four years while teaching in the Department of Industrial
Engineering and Business Management. She joined SAS Institute in 2011 and
is currently Sr. Operations Research Specialist within the Advanced Analytics
and Optimization Services Group. Her research interests include multicriteria
optimisation, multiobjective scheduling, price optimisation and revenue
management.

Reha Uzsoy obtained his BS in Mathematics from B.S.I.E., as well as MS from
Bogazici University and PhD from University of Florida. He is currently a
Distinguished Professor in the Edward P. Fitts Department of Industrial and
Systems Engineering at North Carolina State University. He is the author of
one book, an edited book, and over 70 refereed journal publications.

Juan Gaytán is a Professor of Decision Analysis, Optimisation and Supply
Chain at the Graduate School of the Engineering School of Mexico State
University (UAEM) in Toluca, Mexico. He received his PhD in Operations
Research in 1984. His research interests include: supply chain management,
outsourcing decisions, collaborative inventory policies and interactive
multicriteria decision techniques. He had provided consulting to companies
located in México in simulation, production planning, optimisation and
suppliers selection areas. He currently holds the position of Director of
Graduate Studies in Decision Analysis at UAEM.

This paper is a revised and expanded version of a paper entitled ‘A new genetic
algorithm for multicriteria project selection and scheduling’ presented at
INFORMS Annual Conference, Charlotte, NC, 15 November 2011.

1 Introduction

Researchers from many different areas have recognised the multiple-criteria nature of
project selection and scheduling problems (Medaglia et al., 2008; Deb, 2001) whose
objectives are conflicting in nature, precluding an easily identifiable, unique optimal
solution. Since partial implementation of projects is often not an option, the problem is
classified as a multiple objective combinatorial optimisation (MOCO) problem. Most
project selection and scheduling problems have been shown to be NP-hard even with a
single objective, and are thus likely to be computationally intractable (Lenstra and
Rinnooy Kan, 1981). Hence, evolutionary algorithms (EAs) (Zitzler et al., 2000; Fonseca
and Fleming, 1995; Jaszkiewicz, 2002; Köksalan, 2008), which attempt to obtain
near-optimal solutions in modest computational time, have been widely used.
Among these procedures, the non-dominated sorting genetic algorithm (NSGA-II)
has been widely used for multicriteria optimisation problems since its introduction
in 2001 (Coello Coello, 2009). However, this algorithm was originally designed
for unconstrained problems. Deb et al. (2000) suggest ensuring feasibility in the
implementations of this algorithm for constrained problems by ensuring that feasible
solutions always dominate infeasible ones, regardless of their objective function values.
However, due to the large number of solutions generated during the course of any genetic

 112 N. Summerville et al.

algorithm (GA), examining each constraint in each solution can result in high CPU times.
This issue is important when using GAs for project scheduling problems because
conventional crossover or mutation operations can create infeasible solutions.

In this paper, we extend the NSGA-II procedure to the constrained project selection
and scheduling problem by using the random keys approach of Bean (1994) to represent
feasible project schedule sequences. The combination of the random keys and our greedy
decoding method allows any perturbation of a particular solution by mutation or
crossover operations to produce feasible offspring. We then apply this algorithm to a set
of randomly generated instances of a multicriteria project selection and scheduling
problem and perform computational experiments to evaluate the algorithm performance.

2 Previous related work

A MOCO problem involves a number of objective functions to be simultaneously
minimised or maximised subject to integer or binary decision variables and a number of
constraints that any feasible solution must satisfy. Such problems arise naturally in many
applications with a finite, discrete set of feasible solutions. A general formulation of these
problems is (Ehrgott, 2005)

{ }min () : ; 1,
{ : , 0 integer; 1, , }

jf x x X j m
X x Ax b x i n

∈ =

= = ≥ =

…
…

where fj denotes the jth objective function and x the vector of decision variables. The
matrix A and vector b define the set of linear constraints. A central concept in MOCO
problems is the Pareto set, the set of all feasible non-dominated solutions. A solution x*
is defined to be non-dominated, and hence a member of the Pareto set, if (*) ()j jf x f x′ ′<
for at least one j′ ∈ {1, 2,…,m} and fj(x*) ≥ fj(x) for j ≠ j′. In the remainder of this section
we review approaches to multiobjective optimisation (MO), emphasising the approximate
methods that are the focus of this paper; a complete review of this extensive literature is
clearly beyond the scope of this paper.

2.1 Solution methods for MOCO problems

Solution methods for MO are classified based on the involvement of the decision maker
(Ehrgott, 2000). In a priori methods, all preferences are known at the beginning of the
decision making process, and the algorithms seek to generate the complete Pareto set
(or a subset of it) on the basis of these preferences. An example of this approach is goal
programming (Tamiz et al., 1998; Schniederjans, 1995), where objectives are organised
in a pre-specified hierarchy and low-priority objectives are optimised subject to their not
degrading the value of a more important one. In interactive approaches the decision
maker’s preferences are introduced during the solution process through a series of
computing steps alternating with interaction with the decision maker. An early example
of this approach is the interactive branch and bound procedure of Villareal et al. (1979).
In a posteriori approaches, the set of all Pareto solutions, or an approximation of this set,
is generated. This set is then reviewed by the decision-maker who selects a solution based
on their preferences.

 A random keys genetic algorithm for a bicriterion project selection 113

Due to the NP-completeness of most MOCO problems even with a single objective,
much literature focuses on approximation (heuristic) algorithms to address large problem
instances. These algorithms aim at generating an approximate Pareto set (or a subset of it)
with solutions that either belong to the Pareto set or are sufficiently close to it (Ehrgott,
2000). Algorithms that generate only a subset of the Pareto set must address the issue of
diversity among the solutions produced, ensuring that all subregions of the Pareto set are
adequately represented in the subset presented to the decision maker.

The most commonly used a posteriori meta-heuristic algorithms have been EAs that
use simulated evolution to search for solutions to complex problems (Whitley, 2001).
Chromosomes (usually simple data structures) are used to represent solutions that are
modified using genetic operators such as crossover and mutation to generate new, and
hopefully better, solutions. The ability of EAs to handle complex problems with features
such as discontinuities, multimodality, and disconnected feasible spaces has led to their
wide use as approximate algorithms for multiobjective programming (Zitzler et al., 2000;
Fonseca and Fleming, 1995; Jaszkiewicz, 2002; Köksalan, 2008). The success of EAs in
MO is mainly based on their use of a population of solutions, giving them the ability to
evolve a diverse population of solutions simultaneously. Veldhuizen (2000) note that EAs
are nine times more frequently cited for MO problems than other metaheuristic
approaches. However, EAs have difficulty in handling complex constraints, an issue
which is the focus of this research. Although EAs have been the most widely used
techniques in the literature for MO problems (Crainic and Laporte, 1997), several other
metaheuristic approaches such as simulated annealing, tabu search and memetic
procedures have been proposed (Ehrgott, 2005; Ehrgott and Gandibleux, 2004), but will
not be discussed for the sake of brevity.

The first evolutionary approach to MO was developed by Schaffer (1985) who
modified the simple tripartite GA based on selection, crossover and mutation (Goldberg,
1989) by performing independent selection cycles according to each objective. He
randomly divided each population into M equal subpopulations, each of which was
assigned a fitness metric based on a different objective function. The advantage of this
vector-evaluated GA (VEGA) is that is simple and easy to implement. However, because
each solution in a VEGA is evaluated with only one objective function, solutions near the
optimum of an individual objective function will be preferred, frequently causing VEGA
to find only extreme points of the Pareto front (Horn et al., 1994).

To address this weakness of VEGA, Horn et al. (1994) proposed the niched Pareto
genetic algorithm (NPGA). This algorithm alters the GA tournament selection where sets
of individuals are randomly chosen from the current population and the best subset
placed in the next population. This involves adding Pareto domination tournaments and
implementing sharing in a non-dominant tournament (i.e., a tie), to determine the winner.
The results of the niched Pareto technique for three test instances (two test functions and
an application in hydro systems) were encouraging. However, its performance was found
to be sensitive to the settings of several parameters such as population size. In particular,
it is important to have a large enough population to achieve diversity of solutions and to
sample the breadth of the Pareto front.

Zitzler and Thiele (1998) proposed an elitist EA called the strength Pareto EA
(SPEA). These authors introduce elitism by explicitly maintaining an external population
of non-dominated solutions. A clustering technique is used to improve diversity among
the non-dominated solutions obtained. However, this clustering technique has higher
computational burden than the crowding sort algorithms in NSGA-II.

 114 N. Summerville et al.

Deb et al. (2000) suggested an elitist non-dominated sorting genetic algorithm called
NSGA-II. In elitist algorithms, as the name suggests, an elite-preserving operator allows
the best solutions of a population to be directly carried over to the next generation.
NSGA-II uses an elite-preservation strategy together with a diversity-preserving
mechanism implemented through a crowding comparison procedure. The authors
introduce the concept of non-domination levels where all solutions are categorised into
fronts, the first front being the set of non-dominated solutions, the second front the set of
solutions dominated only by solutions in front one, and so on. A more detailed
description of this procedure, which forms the point of departure for the work in this
paper, is given in Section 4. Among EAs for MO, NSGA-II has been widely used
(Coello Coello, 2009). Zitzler et al. (2000) performed experiments on six different test
problems for several EAs including NSGA, SPEA and VEGA, and found that NSGA
outperformed the other EAs in several quality measures such as the distance to the
reference set and the distribution of the non-dominated solutions; computational time was
not considered in this experiment. Due to its wide use in the literature and the evidence,
albeit limited, of its good performance relative to other EAs, we focus on the NSGA-II
algorithm in this paper. However, that the key component of our algorithm, the random
keys encoding of Bean (1994), can be implemented in any of the EAs for MOCO
problems discussed above.

2.2 Project scheduling and selection problems

The classical project scheduling problem is defined as the allocation of scarce resources
to tasks pertaining to the completion of a project over time (Brucker et al., 1999). In
contrast, the portfolio optimisation problem involves the constrained allocation of assets
towards a subset of available projects, with the most common objective being revenue
maximisation (Black and Litterman, 1992). The project selection and scheduling problem
considered in this paper shares aspects of both these problems, since it involves the both
selection of a subset of projects from an existing set of projects and the scheduling of
those projects over time with constrained resources.

A comprehensive multicriteria project selection and scheduling model was solved by
Carazo et al. (2010). These authors consider interdependence between projects in the
following way: if in period k there are at least mj and at most Mj scheduled projects from
of a set of projects Aj, then there is an increase or decrease in the value of some attribute
such as cost. For example, if several projects in a specific set are scheduled there might
be a reduction in their total cost. Additional constraints such as available resources,
synergy among projects, and limitations on the number of active projects at a given time
are also considered, as well as bounds on starting times and precedence restrictions. They
adapt the scatter search (Glover, 1994) procedure for MO and compare it to SPEA2
(Zitzler and Thiele, 1998). In their computational experiments SS-PPS outperforms
SPEA2 based on the absolute value of the first objective function, disregarding values of
the other two to five objective functions being evaluated.

Santhanam and Kyparisis (1995) propose a multiple criteria decision model for
multiobjective information technology project selection. Criteria such as corporate
priorities, financial benefits and risk are included. Interdependencies are modelled with
nonlinear terms in the objective functions and resource constraints. They also consider
precedence constraints. They solve the problem using goal programming with preemptive
priorities, where the nonlinear terms are linearised with the addition of new variables.

 A random keys genetic algorithm for a bicriterion project selection 115

A specific algorithm was developed for a constrained multiobjective project
scheduling problem by Viana and Pinho de Sousa (2000), who use Pareto simulated
annealing (PSA) (Czyzżak and Jaszkiewicz, 1998) and multiobjective tabu search
(MOTS) (Hansen, 1997). They conclude that for this problem, MOTS generally yields
better results than PSA in terms of both solution quality and efficiency. To assess the
quality of their results, they measure the distance of the solution set to a reference set that
ideally should be the Pareto-optimum set, but was defined as the set of the best
approximations obtained by running all versions of the algorithms.

Gabriel et al. (2006) present a model for optimal project selection under multiple
objectives and random costs. The criteria they consider are project rank, expected project
cost, number of managers needed, project risk, impacts on social welfare. They use
Monte Carlo simulation to incorporate uncertainty in the data, particularly in the costs.
The authors applied this method to a US Governmental agency where 84 projects were
initially considered. Another multiobjective model for the selection and timing of public
projects with constraints related to starting dates for projects, total number of projects to
be selected, precedence constraints, budget and reinvestment was proposed by Medaglia
et al. (2008). These authors assign a weight to each criterion and work with a single
objective problem. They provide a multiobjective mixed integer linear program that can
be incorporated in a user-friendly decision support system.

Jaskowski and Sobotka (2006) developed an EA for a multicriteria construction
project scheduling problem with an adapted Tchebycheff function evaluation. They not
only scheduled tasks, but also decided which contractors to hire under precedence
constraints and renewable constrained resources. The authors solved this as two
sub-problems in parallel. The first problem consists of choosing the contractors using an
EA; the second problem allocates resources to minimise project duration using a
heuristic.

A novel approach to multicriteria optimisation is the interactive analysis of
multiple-criteria project scheduling problems developed by Hapke et al. (1998). The
problem is characterised by resource constraints, precedence constraints and project
performance measures. The first stage of the solution procedure generates an
approximation of the non-dominated set using PSA. The second stage is an interactive
procedure where after some computations, the decision maker inputs preference
information to improve the solutions selected in the next phase.

Rabbani et al. (2010) propose a discrete multiobjective particle swarm optimisation
(MOPSO) algorithm for solving the project selection problem with interdependent
projects and nonlinear objective functions. Their experiments compare the MOPSO to
SPEA II on ten randomly generated test problems. MOPSO generally achieved solutions
with higher quality and produces more non-dominated solutions. However, we consider
this set of problems to be too small to provide comprehensive insight.

Recent work by Medaglia et al. (2007) proposes a multiobjective EA for a project
selection problem where projects can be partially funded. The problem includes multiple
stochastic objectives, project interdependencies and linear resource constraints. The key
elements of this algorithm are an elitist strategy, parameter-less diversity, a fast stochastic
dominance mechanism, and an efficient constraint-handling mechanism that takes
advantage of the linearly constrained solution space. Compared to an alternative approach
called stochastic parameter space investigation, the results showed that the method is
faster and more robust, provides higher quality non-dominated solutions (measured by
the average fraction of these solutions belonging to the reference set, which is obtained

 116 N. Summerville et al.

by aggregating the solutions from both tested algorithms), and is able to consistently
generate a controlled number of solutions that approximate the efficient frontier.

Stummer and Sun (2005) developed a new multiobjective metaheuristic solution
procedure for capital investment planning. This is an integer programming project
selection model with interdependencies in both objective functions and resource
constraints. The authors solve the model with ant colony optimisation, tabu search and
variable neighbourhood search and obtain the entire efficient frontier by enumeration.
They compare the three algorithms in terms of computation time as well as the
percentage of non-dominated solutions found. Computational results on benchmark and
randomly generated test problems show that the tabu search procedure outperforms the
others if the problem does not have too many objective functions and an excessively large
efficient set. The improved Pareto-ant colony optimisation procedure performs better
otherwise.

In summary, while a wide variety of EAs have been tested on project selection and
scheduling problems, most experimentation has been restricted to very small numbers of
problem instances, limiting our ability to draw general conclusions from these studies. In
addition, all these approaches suffer in various degrees from the problem of managing
constraints to ensure feasibility, resulting in additional computational burden. In the
following section we describe the specific problem addressed in this paper, which
incorporates both project scheduling and selection.

3 Problem formulation

The initial motivation for this research was a project selection and scheduling problem
arising in the tourism sector in Mexico. Each year the State of Michoacán’s Ministry of
Tourism (MTM), whose responsibility is to promote the development of tourism
throughout the state, must allocate its annual budget among a set of projects considered
for implementation throughout the upcoming year in order to achieve several objectives.
This process involves not only the selection of projects, but also their timing and
scheduling. The Ministry’s objective is to select projects that will attract more tourists to
Michoacán while improving the quality of life in Michoacán’s towns and cities within the
available budget.

The problem of interest in this paper thus involves the simultaneous selection and
scheduling of a number of projects from a given set of candidate projects linked by
precedence constraints under multiple objectives. In addition, synergies are identified
between pairs of projects such that if two projects i and j are both selected for execution
at the same time, cost reductions may result. The primary constraining resource is
financing, with a limited budget available in each period. However, unused funds from a
period can be carried forward into subsequent periods. We define the following notation:

Decision variables

xit a binary decision variable that takes the value of 1 if project i is started in period t,
and 0 otherwise. We shall denote the matrix of all xit values corresponding to a
specific solution by X.

 A random keys genetic algorithm for a bicriterion project selection 117

Parameters

T number of time periods considered

n number of projects

m number of objective functions

bijt the benefit generated by investment in project i during period t for criteria j

uik the reduction in investment generated by synergy between projects i and k if both are
started at the same time

S the set of all pairs (i, j) of interdependent projects

Qi the set of all projects that must be started before project i

D parameter specifying the target density of the precedence constraint graph

qik binary parameter taking the value of 1 if project i must precede project k, and
0 otherwise

cil the investment needed for project i during its lth period after the start of its execution

rw budget available for period w

yw funds available at the beginning of period w

di duration of project i in units of time periods.

An integer programming formulation of this problem is as follows:

1 1

max () , 1, ,
n T

i ijt it
i t

f X b x j m
= =

= =∑∑ … (1)

subject to
[]max ,1

1

0, 1, , ; ; 1, ,
kw d

kt iw i
t

x x i n k Q w T
−

=

− ≥ = ∈ =∑ … … (2)

[]
, 1 1

1 max 1,1 (,)

, 1, ,
i

n w

i w t it ik iw kw w w w
i t w d i k S

c x u x x y y r w T− + +

= = − + ∈

− − + = =∑ ∑ ∑ … (3)

1

1, 1, ,
T

it
t

x i n
=

≤ =∑ … (4)

2

0, 1, , {0, 1}, 1, , ; 1, ,

binary , ; 0,
i

T

it it
t T d

it t

x i n x i n t T

x i t y t
= − +

= = ∈ ∀ = ∀ =

∀ ≥ ∀

∑ … … …
 (5)

Constraint set (2) represents the precedence constraints, while (3) limits the funds
available in each period. Synergy between projects is represented by the decrease
(or increase) uik in the total cost for projects i and k when both are selected. The first

 118 N. Summerville et al.

summation in (3) represents all the costs that need to be covered for the projects selected
to start in the time interval up to and including period w. For instance, the cost of starting
two projects at the same time might be less than the sum of their individual costs if the
same infrastructure is used. This interdependence is considered without regard to the
starting time period of the projects and is represented as a quadratic term in (3). This
constraint could be linearised using the approaches discussed in Anstreicher (2003), but
this linearisation does not yield any significant advantage for the EA approach we adopt.
We assume that unallocated funds from previous periods remain available for future
projects. Constraints (4) ensure that a project cannot be started twice. A project started in
a particular period does not have to be finished in the same period, but can be continued
in the following period. Note that this model involves two different interdependencies
between projects, precedence constraints and cost synergies, of which the latter are
represented in the set S of interdependent pairs of projects.

The formulation above clearly shows the NP-hard structure of the problem due to the
presence of the knapsack-like budget constraints (3). Hence, we follow the literature in
using an EA to generate an approximation to the set of Pareto-optimal solutions. The
details of our proposed solution algorithm are given in the next section.

4 The PS-NSGA-II algorithm

We first review the NSGA-II algorithm of Deb et al., which has proven successful in
addressing a range of MOCO problems (Deb, 2001). However, that procedure is designed
primarily for unconstrained problems, and its direct application to the problem we
address results in high computational burden. We then use the random keys approach of
Bean (1994) to obtain an enhanced solution representation that avoids the need for
time-consuming feasibility checks within the GA. We first define the terminology used in
the rest of the paper.

A solution X is represented by a binary n × T binary matrix whose element xij = 1 if
project i is selected to begin in time period t and 0 otherwise. Here n denotes the number
of projects available for consideration and T the total number of time periods. A solution
value f is an m-dimensional vector, where m is the number of objective functions, whose
j′th entry is obtained by evaluating the solution matrix X for criterion fj. The solution
matrix X is thus a natural candidate for use as a chromosome representing a solution
within the GA. However, as we show below, this representation creates difficulties due to
its inability to maintain feasibility when subjected to genetic operators such as mutation
and crossover.

In the NSGA-II algorithm for unconstrained problems an initial population is
generated with P random chromosomes. The non-dominated sorting procedure is then
applied to generate different fronts, each of which represents a distinct level of
non-domination. This non-dominated sorting procedure involves two entities: a
domination count ni, the number of solutions by which each solution i is dominated, and
the set Si of solutions dominated by solution i. The procedure examines each member of
the current population, performs the domination evaluation and updates the domination
count. After the procedure is completed, the fronts represent an ascending level of
non-domination, with front 1 (with domination count equal to 0) containing all the
non-dominated solutions.

 A random keys genetic algorithm for a bicriterion project selection 119

As an example, consider the following two solution values for four solutions x1
through x4 in a maximisation problem where fj(xk) is the solution value for criterion j in
solution k:

() () () ()1 2 3 4[4, 5] [6, 4] [3, 1] [8, 9]f x f x f x f x= = = =

We see that f1(x4) = 8 ≥ f1(xk) ∀k and f2(x4) = 9 ≥ f2(xk) ∀k ∴ x4 x1, x2, x3, where
represents domination. By similar reasoning, we can conclude x1 x3 and x2 x3.
Therefore, x4 ∈ Front1; x1, x2 ∈ Front2 and x3 ∈ Front3.

Once the fronts have been identified, a predefined number of chromosomes are
selected, giving preference to lower ranked fronts. Solutions from a higher numbered
front are not included until all solutions in lower numbered fronts have been included. If
there are more than the required number of chromosomes in a front, a crowding sort
procedure is performed to select a subset of these based on their distance from each other
to ensure coverage of the entire Pareto set. The crossover and mutation operators are then
applied, generating the new population, together with the elite solutions from the
previous population. If the stopping criterion is satisfied, the algorithm stops; if not,
iterations continue. Chromosomes are selected for crossover with a specified probability,
and for mutation with a specify probability of mutation. These solutions, together with
the elite solutions from the previous population, form the new population. Details of the
generic NSGA-II can be found in Deb (2001).

Our implementation of NSGA-II for the problem under study uses the natural
chromosome representation derived from the MOCO formulation of the problem given in
Section 3. The chromosome takes the form of a matrix X whose entry xit indicates
whether project i is started in period t. In order to ensure that no project is started more
than once, our crossover operator proceeds by copying entire rows of the matrix as a unit
between parent solutions and their offspring. Specifically, we apply one-point crossover
by selecting two parents for crossover using a crossover probability of 0.8. We then
randomly select a row index k assuming equal probability of selection for each row. The
offspring of the two parents is then constructed using rows 1 through k of the first parent
and rows k + 1 through n of the other. Mutation is implemented by randomly changing
the period in which a project is to be started. Once a chromosome is selected for
mutation, using a mutation probability of 0.2, a row k is randomly selected, again
assuming all rows have equal probability of selection. Suppose that within this row we
initially have xkt = 1. The mutation operator sets xkt = 0 and xgt = 1, where g is randomly
selected from a discrete uniform distribution on the set {1,...,T}. The mutation and
crossover probabilities were explored in preliminary experiments using a limited number
of problem instances, and these values gave satisfactory results.

The difficulty in applying the NSGA-II procedure to our problem arises from the loss
of feasibility during application of the mutation and crossover operators, as illustrated in
the following example. The natural chromosome representation for our project selection
and scheduling problem that would be used by NSGA-II is the X matrix defined above.
Suppose we wish to crossover two solutions X1 and X2, with four projects and three time
periods. Even if the crossover is performed by moving entire rows in order to avoid
starting projects more than once, we can obtain the outcome illustrated in Figure 1.
Specifically, the budget constraint might be violated by starting several projects in the
same period (period 2 in this example), or the precedence constraint requiring that

 120 N. Summerville et al.

project 3 has to be completed before project 2 might be violated by starting project 3
ahead of 2.

Figure 1 Example of infeasible crossover

The remedy for this situation suggested by Deb (2001) is to incorporate the feasibility
check in the front generating procedure such that an infeasible solution is always
dominated by a feasible one. However, over the course of many NSGA-II iterations the
algorithm consumes a great deal of time evaluating infeasible solutions. In our
experiments with NSGA-II, most of the solutions evaluated in our early experiments
were infeasible due to the multiple constraints linking projects and time periods. Our
computational results also indicate that this may lead to premature convergence, resulting
in a set of solutions that are in fact not actual Pareto solutions.

4.1 Random keys

Bean (1994) describes random keys as a “…representation that encode a solution with
random numbers. These values are used as sort keys to decode the solution. Random keys
eliminate the offspring feasibility problem by using chromosomal encodings that
represent solutions in a soft manner. These encodings are interpreted in the objective
evaluation routine in a way that avoids the feasibility problem”. This approach has been
applied successfully to a variety of complex scheduling problems, including the
minimisation of total tardiness on parallel machines with sequence-dependent setup times
(Norman and Bean, 1999), parallel machine tools (Norman and Bean, 2000), and single
and parallel batch processing machines (Malve and Uzsoy, 2007; Wang and Uzsoy,
2002).

Under this representation, the two chromosomes above might be represented by the
vectors K1 = [0.9674, 0.4673, 0.2370, 0.0321] and K2 = [0.5737, 0.2230. 0.1597, 0.7192]
where each element is a random variate uniformly distributed between 0 and 1. Each of
these vectors is initially decoded as sort keys R that correspond to a permutation of the
projects being considered. In the example above, the vector K2 is decoded as R2 = [2, 3, 4,
1] representing a permutation of the projects where project 2 is first, followed by 3, 4 and
1 in that order. When implementing crossover using random keys, two chromosomes are

 A random keys genetic algorithm for a bicriterion project selection 121

randomly selected for crossover with a specified crossover-probability. Once the two
chromosomes have been scheduled for crossover (K1 and K2 in Figure 2), a random
number of elements from each chromosome are selected (for this example, the first two
first elements in these chromosomes). The crossover is then performed as illustrated in
Figure 2: the two elements are taken from K1 and substituted for the two elements in K2,
generating a new chromosome K3.

Figure 2 Crossover example using random keys

To implement mutation, a chromosome is randomly selected for the mutation procedure
with a mutation probability, a random number of elements are selected and new values
for these selected elements are randomly generated from a Uniform[0, 1] distribution.

4.2 Greedy decoding algorithm

The random keys encoding described allows us to search over all permutations of the
projects, ensuring that only feasible permutations will be generated. In order to provide
feasible solutions to the project selection and scheduling problem we need a decoding
mechanism that will map a random keys chromosome into a feasible solution. This is
accomplished using a greedy decoding algorithm, which is described below.

The input for the greedy decoding algorithm is the vector K of random keys, decoded
into a permutation R of the projects as described above. Given such a permutation of the
projects, the heuristic first randomly selects one of the objective functions with respect to
which the schedules will be evaluated. The algorithm then considers the projects one by
one in the order in which they appear in the Rank. Each project, when selected, is
tentatively scheduled to begin in the time period that generates the best value of the
selected objective function. Once the project has been tentatively scheduled, all
constraints are checked to determine whether this assignment is feasible or not. If any
constraint is violated, the project is tentatively rescheduled to the time interval that yields
the next best value of the randomly chosen objective. If no interval permits a feasible
assignment, this project is discarded and the next project in the sequence is selected. The
pseudocode is given in Figure 3 using the notation defined in the previous section, with
additional notation defined in the figure. The number of operations required to check
feasibility is O(Tn2), where T is the number of periods and n the number of projects.

It is straightforward to see that all solutions generated in this manner from the random
keys chromosomes are feasible. This is due to the feasibility evaluation performed in the
greedy decoding algorithm; if a particular project is scheduled for a particular time period
and the feasibility evaluation fails, then the project is not scheduled for this time period.
The procedure is greedy in nature, since a project that is discarded is never reconsidered.

 122 N. Summerville et al.

Figure 3 Pseudocode for greedy decoding algorithm

(At iteration iIter, given KEYSiIter)

For i* such that keyi*,iIter > all keyi,iIter

Set m* = RANDU(1, m)

While TIMES ≠ Ø

Select t*, such that bim*t* > bim*t ∀i, t
Set xit* = 1
Evaluate feasibility
If not feasible

Do soli*,t*,iIter = 0
Remove t* from TIMES

Else break while
End if

End while
Remove keyi*,iIter from KEYSiIter
End for

soli,t,iIter: element of the solution corresponding to project i, time period t and iteration iIter
keyi,iIter: element of the KEYS set corresponding to project i and iteration iIter
KEYSiIter: set of all random keys from iteration iIter
TIMES: set of time periods

The components of our proposed algorithm, PS-NSGA-II, are now complete. An initial
population is created by generating a population of N random chromosomes, where N is a
parameter defined by the user. Each random chromosome is represented by a sequence of
n values between 0 and 1, using the random keys encoding described above. We then use
the greedy decoding algorithm to decode each sequence into a feasible solution matrix
Xij. After all chromosomes have been decoded, we perform the non-dominated sorting of
Deb (2000) to generate different fronts, and select the number of solutions we need,
giving priority to lower rank fronts. If the number of solutions in the last front exceeds
the number of solutions we still need to obtain, Deb’s crowding sort procedure is
performed. Mutation and crossover operators are applied to the chromosomes creating the
new population, where the stopping criterion is evaluated. The pseudocode for
PS-NSGA-II is given in Figure 4 using the following notation:

• N: population size

• IT: maximum number of iterations to be performed before termination of algorithm

• FRONTiIter,fFront: set of solutions in front fFront at iteration iIter

• SFRONTiIter,fFront: sorted subset of FRONTiIter,fFront

• KEYSiIter: set of all random keys at iteration iIter

• KEYSCROSSiIter: set of random keys obtained from crossover iteration iIter

 A random keys genetic algorithm for a bicriterion project selection 123

• KEYSMUTiIter: set of random keys obtained from mutation in iteration iIter

• SOLiIter: set of solutions at iteration iIter.

We now discuss the design and results of the computational experiments used to compare
the performance of NSGA-II and PSNSGA-II in the next section.

Figure 4 Pseudocode for the PS-NSGA-II procedure

Set iterCount = 1
Generate set of initial random keys KEYS0

Set solutions matrix SOLiterCount = Ø
While iterCount ≤ IT

Set FRONTfCount = Ø
Set numSol = 0
Set fCount = 1
Decode KEYSiterCount–1 to SOLiterCount using the greedy method for each rank
Obtain FRONTij with non-dominated sorting algorithm
While numSol < N

If | FRONTfCount | + numSol ≤ N
Add all solutions from FRONTfCount to SOLiterCount
numSol = numSol + | FRONTfCount |

Else

Create SFRONTfCount ⊂ FRONTfCount with crowding sort procedure
Add solutions from SFRONTfCount to SOLiterCount
numSol = N

End if
End while
Obtain KEYSiterCount from SOLiterCount
Perform crossover to KEYSiterCount to get KEYSCROSSiterCount
Perform mutation to KEYSiterCount to get KEYSMUTterCount

KEYSiterCount = KEYSiterCount ∪ KEYSCROSSiterCount ∪ KEYSMUTiterCount
iterCount = iterCount + 1

End while

5 Experimental design

5.1 Generation of random test instances

We explore the performance of our PS-NSGA-II algorithm through computational
experiments with randomly generated test instances. The test instances are generated in a
manner that allows us to systematically vary the properties of the problem instances that
we believe will affect the performance of the algorithms. As mentioned above, for
simplicity of analysis we restrict our attention to two objective functions whose

 124 N. Summerville et al.

coefficients are generated to ensure that the objective functions are in conflict, requiring
effective generation of the Pareto set. Since the emphasis of the paper is on extending the
NSGA-II procedure to handle constraints more effectively, we systematically vary the
density of the precedence constraints and the strength of the interdependence between
projects. The available budget is varied to control the degree to which the budget
constraints are binding, which will affect the number of feasible solutions available to the
algorithms. Finally, we also vary the size of the problem instances, determined by the
number of projects and the number of time periods in the planning horizon, to examine
their effect on the computational requirements of the two algorithms compared. The
problem instances generated are somewhat smaller than the real-world problem (which
had of the order of 50 projects and four objective functions) in order to permit multiple
computational experiments examining a wider range of instance and algorithm
characteristics than would otherwise be possible. We use uniform distributions (both
continuous and discrete) in order to have better control of the values of these parameters,
and because the uniform distribution assigns equal probability to extreme values,
allowing for the generation of quite diverse problem instances. We shall denote a
continuous uniform distribution over the interval [a, b] by U[a, b], and a discrete uniform
distribution over the integers between a and b by DU[a, b].

We begin by generating the contribution bi1t of each project i to objective function 1
as a random variate from a U[0, 100] distribution. The contribution bi2t of the project to
the second objective is then generated such that bi2t = 100 – bi1tU[0, 1] in order to ensure
that the two objective functions are in conflict.

To obtain the savings uik obtained by starting projects i and k in the same time period,
we first randomly generate the number of interdependencies NI from a discrete uniform
distribution with parameters

~ 0,
(3, 6)
nNI DU round

DU
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

where n is the total number of projects and round denotes the operation of rounding to the
nearest integer. The number of interdependencies must be related to the number of
projects in the instance. In order to ensure variability in the number of interdependencies
in each randomly generated instance, the upper bound of this discrete uniform
distribution is also a random variable. We use the pseudocode given in Figure 6 to
generate a matrix U = [uik] containing NI non-zero elements representing the cost savings
obtained when projects i and k are started in the same period. We use the numbering of
the projects in order to populate only the upper triangle of the savings matrix to save
computational time during the main algorithm run.

The qik representing the precedence relationships are then generated as suggested by
Hall and Posner (2001) using a parameter D specifying the target density of the
precedence constraint graph, i.e., the probability that a given arc (i, j) exists in the
precedence graph. The probability Pij that a given arc (i, j) exists in the precedence graph
is then given by

()
1

1

(1)
1 1 (1)

j i

ij j i

D DP
D D

− −

− −

−
=

− − −

The project costs per time period cil are random variates from a U(0, 100) distribution.

 A random keys genetic algorithm for a bicriterion project selection 125

Figure 5 Pseudocode for the generation of the interdependences matrix

For i = 1 to NI
Sav ~ ContinuousUniform(0, 100)
I1 ~ DiscreteUniform(n)
I2 ~ DiscreteUniform(n)
Min = minimum(I1, I2)
Max = maximum(I1, I2)
uMin,Max = Sav

End for

Budgets rt for each time period t are randomly generated to ensure that the budget
constraint will be sufficiently restrictive that the problem instance will not be trivial to
solve, but not so restrictive that there are no feasible solutions. If we have 20 projects,
and the cost for a project for a particular period is uniformly distributed in the interval
(0, 100), the available budget for period t is a uniform random variate in the interval
(0, 100) multiplied by a discrete uniform random variate over the interval (1, 10),
ensuring that, on average, the available budget will be enough for 5.5 projects, i.e.,

()(0, 100) 1, ()tr U DU round n BL= ∗ ∗

where BL represents the tightness of the budget, the smaller the BL, the tighter the
budget. The duration di of project i is a discrete uniform variate over the interval (1, T)
where T is the number of periods in the planning horizon.

We evaluate the performance of NSGA-II and PS-NSGA-II on the basis of both
solution quality and CPU time. The discussion of solution quality is clearly complicated
by the multiobjective nature of the problem. Due to the particular characteristics of our
instances and algorithms, we adopt the approach of creating a reference set from
solutions being generated by both algorithms and choosing the Pareto frontier of this set
(Hansen, 1998). For a given instance, the solutions from all different runs from
both algorithms (for different number of iterations, population, etc.) are collected. The
non-dominated sort procedure is performed in order to obtain front 1, which becomes the
reference Pareto frontier. For each run, the percentage of solutions that belong to this
reference Pareto frontier, denoted by %NDS, is considered as the response variable
representing solution quality in this experiment.

It is widely recognised in the literature that the performance of EAs is significantly
affected by the choice of values for the parameters used in the algorithm. The population
size at each generation is important to ensure that a sufficiently diverse set of solutions
can evolve without leading to premature convergence, while maintaining a modest
computational burden. The choice of mutation and crossover probabilities also
determines the trade-off between intensification of the search in promising areas of the
solution space and diversification to ensure all portions of the space are examined.

The termination criterion used is also important to ensure that the algorithm continues
to search as long as worthwhile new solutions are being discovered, and that the
procedure terminates when there is a low probability of additional worthwhile solutions
being found. Both the algorithms tested thus use a stopping criterion composed of two
elements:

 126 N. Summerville et al.

• NewNDS: the minimum number of non-dominated solutions in the new population
for the algorithm to continue iterating

• NumIter: number of iterations to stop: the minimum number of consecutive iterations
during which the algorithm did not find at least NewNDS.

Thus, if NewNDS = 2 and NumIter = 5, the algorithm will stop after five consecutive
iterations in which a total of less than 2 new non-dominated solutions at each iteration
have been obtained. The tolerance parameter ε is used in the dominance evaluation:
solution x is treated as dominating solution y if

•
() ()

()
j j

j

f f
ε j

f
−

≥ ∀
x y

x

•
() ()

()
j j

j

f f
ε

f
−

>
x y

x
 at least one j.

Thus, a larger value of ε ought to result in earlier termination with a less precise
approximation of the Pareto set.

A number of preliminary experiments were conducted on a set of small instances with
up to 20 projects and 12 time periods were conducted, varying the values of the algorithm
parameters discussed above. Smaller problem instances were used in order to allow
identification of the actual Pareto set by explicit enumeration. We initially used a
different stopping rule in these experiments, under which the algorithms terminated if no
further non-dominated solutions were identified in a specified number of iterations,
where the number of iterations was proportional to the population size. Examination of
these results indicated that both algorithms were spending a lot of time generating
solutions that different only very slightly from previously encountered Pareto solutions,
motivating the enhanced stopping criterion described above. The results of these
preliminary experiments led to our final experimental design that we discuss in terms of
two groups of experimental factors, those related to the algorithms and those related to
the problem instances.

5.2 Experimental design

The instance factors that were included in the full experimental designed are listed
in Table 1. Parameters BL and D are used as defined in the previous section. We
implemented a full factorial experiment, creating five independent problem instances for
each combination of these factors, for a total of 80 instances. The algorithm factors
explored in the final experiment are summarised in Table 2. All levels of each algorithm
parameter were applied to both algorithms compared.
Table 1 Experimental factors related to problem instances

Instance Level 1 Level 2

Number of projects 20 30
Time periods 6 12
Budget level (BL) 0.5 1
Interdependence (D) D ~ U(0, 0.05) D ~ U(0.05, 1)

 A random keys genetic algorithm for a bicriterion project selection 127

Table 2 Experimental factors related to algorithms

Factor Level 1 Level 2

Algorithm NSGA-II PS-NSGA-II
Population size 20 50
Stopping rule settings (NewNDS – NewIter) 5 – 5 8 – 3
Tolerance parameter for dominance comparisons 0.01 0.1

With 16 algorithm configurations, five algorithm replicates for each configuration and
80 instances, the full factorial experiment contains 6,400 observations (runs).

The NSGA-II algorithm was implemented as described in Section 2 using the solution
matrix X defined in Section 3 as the chromosome. The PS-NSGA-II algorithm was
implemented as described in Section 4. Due to the random nature of the GAs each
algorithm was run on each instance five times with independent random number seeds.
All runs were performed on a Lenovo computer with the following characteristics: Intel®
Core™ i7-2620M CPU at 2.7 GHz with 8 GB RAM. The MATLAB version used was
version R2013b.

6 Results

Examining the assumptions of classical analysis of variance (ANOVA) related to
constant variance and independence of the error terms, we concluded that our data satisfy
these assumptions. However, regarding the normal distribution of the error terms, the
Anderson test gave a p-value of 0.05, rejecting the null hypothesis that the residuals are
normally distributed. Thus statistical analysis using ANOVA is not appropriate. Some
transformations, as taking the square root and logarithm, were performed in other to
normalise the residuals; the behaviour did improve, but the assumption was still not met.
Hence, we analyse the outcome of the experiments using non-parametric tests (Olshen,
1967). In particular, the Kruskal-Wallace test that we use divides the overall set of
observations into a number of independent samples such as the observations obtained
under different levels of stopping rule, algorithm, and so on, and computes the ranking of
each observation within the combined sample. The null hypothesis tested is that the
rankings in all samples come from the same population. Extensive discussion of this and
other non-parametric tests can be found in Conover (1980).

6.1 Solution quality

The solution quality is measured as the percentage of non-dominated solutions (%NDS).
To calculate this percentage, we compute the following quantities:

• all_solutionsi: the total number of distinct solutions obtained from both algorithms
for a given instance i

• opt_solutionsi: the total number of Pareto solutions found by both algorithms

• run_opt_solutionsij: the subset of Pareto solutions for instance i generated by the run
j, where a run is defined as a unique combination of algorithm factors.

 128 N. Summerville et al.

Then, the %NDSij is defined as run_opt_solutionsij / opt_solutionsi.
Table 3 Factors influencing % of non-dominated solutions

Factor MSE Chi-squared test
statistic p-value

Algorithm 3.54E+09 1,892.42 0.00
Budget 1.12E+08 59.97 0.00
Population 1.03E+08 54.94 0.00
Projects 8.75E+07 46.83 0.00
Tolerance factor for stopping rule 4.88E+07 26.12 0.00
Interdependence 6.54E+06 3.50 0.06
Stopping rule 2.31E+06 1.24 0.27
Algorithm replicate 3.34E+05 0.71 0.95
Time periods 3.05E+04 0.02 0.90

Table 3 summarises the results of the Kruskal-Wallis test (Conover, 1980) across
different factors on the percentage of non-dominated solutions %NDS, where the p-value
indicates the level of statistical significance at which the two levels of each experimental
factor can be distinguished. The difference between the two algorithms accounts for the
majority of the variance, implying a statistically significant difference between NSGA-II
and PS-NSGA-II. The most striking finding in these experiments was that all solutions
generated by NSGA-II were dominated by those from PS-NSGA-II. These results suggest
that NSGA-II is converging prematurely, before it can reach the solutions identified by
PS-NSGA-II. A contributing factor to this behaviour is the large number of infeasible
solutions considered by NSGA-II, which cause the stopping criterion to be satisfied
prematurely.

As would be expected, the instance related factors of budget and number of projects
have significant effect on the %NDS found by each algorithm. This is due to the fact that
larger instances require a larger population to maintain a suitable level of diversification
and thus prevent premature convergence without examining all areas of the Pareto
frontier. A restrictive level of the budget factor impacts the number of feasible solutions,
resulting in fewer Pareto solutions overall and making it more difficult for the algorithms
to generate a comprehensive representation of the Pareto set in a given CPU time.

The factors that do not have a significant impact on %NDS are also of interest. The
interdependence factor describing the level of interaction between projects in the
objective functions has a p-value of 0.06, which suggests that this factor does in fact have
an impact on performance, but that this impact is variable across the overall experiment.
The stopping rule does not have a significant impact, which suggests that both setting are
achieving essentially the same level of coverage of the search space in terms of Pareto
solutions. Further research is necessary to examine whether the set of solutions generated
are largely the same, or the two different stopping rules lead to different Pareto frontiers.
Finally, the lack of significance of the algorithm replicate factor in encouraging, since it
indicates consistent performance by both algorithms on a given instance across
independent replications of each algorithm.

 A random keys genetic algorithm for a bicriterion project selection 129

6.2 Analysis of computation time

Due to the violation of the linear model assumptions, we will not proceed with regular
statistical analysis such as ANOVA, we again use non-parametric tests.

Table 4 summarises the average computation times (in seconds) for each algorithm by
the main instance factors. NSGA-II outperforms PS-NSGA-II in computational time, but
as explored in previous section, PS-NSGA-II yields significantly better solution quality.
An average time of 362 seconds (versus 111 seconds for the NSGA-II) for the larger
instances is an acceptable run time, given the improvement in the quality of solutions
presented above. The lower CPU time of the conventional NSGA-II does not, in our
opinion, represent higher computational efficiency, but rather premature termination of
the algorithm due to its inability to detect additional non-dominated solutions.
Table 4 Computational time (seconds) by instance and algorithm

Projects Time periods NSGA-II time PS-NSGA-II time

20 6 32.43 128.94
 12 72.72 210.89
30 6 53.62 208.99
 12 111.30 362.23

Table 5 summarises the influences of each experimental factor on the average CPU time.
As would be expected, the most significant factors are those determining the size of the
search space (number of projects and number of time periods) and the number of feasible
solutions (budget level and project interdependence). The impact of the population size is
also significant since this determines the amount of computation taking place at each
generation of the algorithms. The lack of impact of the stopping rule once again suggests
that the two settings result in approximately the same number of solutions being searched
overall. The lack of impact of the algorithm replicate factor once again suggests
consistent performance by each algorithm across independent replications.
Table 5 Factors influence on CPU time

Factor MS Chi-squared p-value

Population 1.17E+10 3,436.39 0.00
Algorithm 6.04E+09 1,768.32 0.00
Time 1.40E+09 409.61 0.00
Projects 7.31E+08 214.10 0.00
Stopping 5.74E+08 168.18 0.00
Budget 5.63E+07 16.49 0.00
Interdependence 3.40E+07 9.95 0.00
Epsilon 8.86E+06 2.60 0.11
Replicate algorithm 7.73E+04 0.09 1.00

To further explore the differences in CPU time, we analysed the impact of the number of
generations on the CPU time for both algorithms, which is shown in Figure 6. While the
CPU time per run is higher for NSGA-II, the average of number of iterations required to

 130 N. Summerville et al.

satisfy the stopping criterion is less for NSGA-II, confirming our hypothesis of NSGA-II
converging prematurely.

Figure 6 Computational time vs. number of iterations (see online version for colours)

To further examine the behaviour of the CPU time we made runs fixing the CPU time
and number of iterations and discarding the stopping rule used in the main experiment.
Due to the long CPU times required this was done for a single instance to allow detailed
exploration of the behaviour of the two algorithms shown in Figure 7. While this analysis
is clearly does not permit any statistical generalisations, we believe it provides some
indication of the performance of the algorithms. The results for this instance show that
when the number of iterations is fixed at 100, NSGA-II does not return any Pareto
solutions at all, and finds only one when allowed a CPU time limit of one hour. In
contrast, PS-NSGA-II finds three Pareto solutions after an hour, and two of the same
three when run for 100 iterations. This behaviour is not surprising, given that NSGA-II
generates many infeasible solutions, while PS-NSGA-II searches over feasible solutions
due to the use of random keys. The example also suggests that the number of Pareto
solutions for the problem instances in our experiments may be quite small, making them
quite difficult test instances.

Figure 7 Long run test results (see online version for colours)

 A random keys genetic algorithm for a bicriterion project selection 131

The results summarised above suggest that the proposed PS-NSGA-II algorithm yields
substantially better solution quality as measured by %NDS. The computational time of
the NSGA-II procedure is substantially less, but this advantage is more than offset by the
much lower number of Pareto solutions obtained by the procedure. The key different
between the two procedures compared is their treatment of infeasible solutions. The
PS-NSGA-II procedure uses the random keys representation to reduce the number of
infeasible solutions encountered. By searching over the permutations of projects that are
then scheduled in a greedy fashion based on the permutation, a feasible solution can be
constructed for each chromosome much more rapidly than is possible by checking all
constraints individually for violations. This allows the PS-NSGA-II algorithm to explore
more of the solution space for a given population size, resulting in the higher number of
Pareto solutions encountered.

7 Conclusions and future directions

Motivated by a real-world application in the tourism sector, we present a comprehensive
formulation for the multicriteria project selection and scheduling problem including
interdependencies between the projects, in terms of synergies, as well as precedence;
allowing the benefits of a project to depend on the time periods in which it is scheduled;
and the costs to be time dependent as well. Our proposed PS-NSGA-II algorithm uses the
random keys encoding together with a greedy decoding heuristic to ensure that all
solutions in a population are feasible, allowing the procedure to generate more Pareto
solutions in less time.

A number of interesting directions for future research arise from these experiments.
The premature convergence of NSGA-II suggests the exploration of more flexible
stopping criteria for both algorithms compared; it may well be the case that longer runs of
PS-NSGA-II may yield additional Pareto solutions over those obtained with the current
parameter set. A more extensive study of the test instances that reveals the number of
feasible solutions would be of interest; we conjecture that many of the test instances have
relatively few feasible solutions which makes them particularly challenging for NSGA-II.
Finally, the extension of these experiments to a larger number of objective functions will
also provide insight into the relative effectiveness of the random keys representation.

Acknowledgements

The research of the first author was supported by a scholarship from the Mexican
Foundation for Science and Technology Consejo Nacional de Ciencia y Technologia
(CoNACYT).

References
Anstreicher, K.M. (2003) ‘Recent advances in the solution of quadratic assignment problems’,

Mathematical Programming Series B, Vol. 97, pp.24–42.
Bean, J.C. (1994) ‘Genetic algorithms and random keys for sequencing and optimization’, ORSA

Journal on Computing, Vol. 6, No. 2, pp.154–160.

 132 N. Summerville et al.

Black, F. and Litterman, R. (1992) ‘Global portfolio optimization’, Financial Analysts Journal,
pp.28–43.

Brucker, P., Drexl, A., Möhring, R., Neumann, K. and Pesch, E. (1999) ‘Resource-constrained
project scheduling: notation, classification, models, and methods’, European Journal of
Operational Research, Vol. 112, No. 1, pp.3–41.

Carazo, A.F., Gómez, T., Molina, J., Hernández-Díaz, A.G., Guerrero, F.M. and Caballero, R.
(2010) ‘Solving a comprehensive model for multiobjective project portfolio selection’,
Computers & Operations Research, Vol. 37, No. 4, pp.630–639.

Coello Coello, C. (2009) ‘Evolutionary multi-objective optimization: some current research
trends and topics that remain to be explored’, Frontiers of Computer Science in China, Vol. 3,
No. 1, pp.18–30.

Conover, W.J. (1980) Practical Nonparametric Statistics, John Wiley, New York.
Crainic, T.G. and Laporte, G. (1997) ‘Planning models for freight transportation’, European

Journal of Operational Research, Vol. 97, pp.409–438.
Czyzżak, P. and Jaszkiewicz, A. (1998) ‘Pareto simulated annealing – a metaheuristic technique for

multiple-objective combinatorial optimization’, Journal of Multi-Criteria Decision Analysis,
Vol. 7, No. 1, pp.34–47.

Deb, K. (2001) Multi-Objective Optimization Using Evolutionary Algorithms, Wiley.
Deb, K. et al. (2000) ‘A fast elitist non-dominated sorting genetic algorithm for multi-objective

optimization: NSGA-II’, Parallel Problem Solving from Nature PPSN VI, pp.849–858.
Ehrgott, M. (2000) ‘Approximation algorithms for combinatorial multicriteria optimization

problems’, International Transactions in Operational Research, Vol. 7, No. 1, pp.5–31.
Ehrgott, M. (2005) Multicriteria Optimization, 2nd ed., Springer.
Ehrgott, M. and Gandibleux, X. (2004) ‘Approximative solution methods for multiobjective

combinatorial optimization’, TOP, Vol. 12, No. 1, pp.1–63.
Fonseca, C.M. and Fleming, P.J. (1995) ‘An overview of evolutionary algorithms in multiobjective

optimization’, Evolutionary Computation, Vol. 3, No. 1, pp.1–16.
Gabriel, S.A., Kumar, S., Ordóñez, J. and Nasserian, A. (2006) ‘A multiobjective optimization

model for project selection with probabilistic considerations’, Socio-Economic Planning
Sciences, Vol. 40, No. 4, pp.297–313.

Glover, F. (1994) ‘Genetic algorithms and scatter search: unsuspected potentials’, Statistics and
Computing, Vol. 4, No. 2, pp.131–140.

Goldberg, D. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley Professional.

Hall, N.G. and Posner, M.E. (2001) ‘Generating experimental data for computational testing with
machine scheduling applications’, Operations Research, Vol. 49, No. 6, pp.854–865.

Hansen, M.P. (1997) ‘Tabu search for multiobjective optimization: MOTS’, Proceedings of the
13th International Conference on Multiple Criteria Decision Making (MCDM’97), Cape
Town, South Africa, pp.574–586.

Hansen, M.P. (1998) Metaheuristics For Multiple Objective Combinatorial Optimization, Working
Paper.

Hapke, M., Jaszkiewicz, A. and Slowinski, R. (1998) ‘Interactive analysis of multiple-criteria
project scheduling problems’, European Journal of Operational Research, Vol. 107, No. 2,
pp.315–324.

Horn, J., Nafpliotis, N. and Goldberg, D.E. (1994) ‘A niched Pareto genetic algorithm for
multiobjective optimization. evolutionary computation’, IEEE World Congress on
Computational Intelligence, Proceedings of the First IEEE Conference, Vol. 1, pp.82–87.

Jaskowski, P. and Sobotka, A. (2006) ‘Multicriteria construction project scheduling method using
evolutionary algorithm’, Operational Research, Vol. 6, No. 3, pp.283–297.

Jaszkiewicz, A. (2002) ‘Genetic local search for multi-objective combinatorial optimization’,
European Journal of Operational Research, Vol. 137, No. 1, pp.50–71.

 A random keys genetic algorithm for a bicriterion project selection 133

Köksalan, M. (2008) ‘Multiobjective combinatorial optimization: some approaches’, Journal of
Multi-Criteria Decision Analysis, Vol. 15, Nos. 3–4, pp.69–78.

Lenstra, J.K. and Rinnooy Kan, A.H.G. (1981) ‘Complexity of vehicle routing and scheduling
problems’, Networks, Vol. 11, No. 2, pp.221–227.

Malve, S. and Uzsoy, R. (2007) ‘A genetic algorithm for minimizing maximum lateness on parallel
identical batch processing machines with dynamic job arrivals and incompatible job families’,
Computers and Operations Research, Vol. 34, pp.3016–3028.

Medaglia, A.L., Graves, S.B. and Ringuest, J.L. (2007) ‘A multiobjective evolutionary approach
for linearly constrained project selection under uncertainty’, European Journal of Operational
Research, Vol. 179, No. 3, pp.869–894.

Medaglia, A.L., Hueth, D., Mendieta, J.C. and Sefair, J.A. (2008) ‘A multiobjective model for the
selection and timing of public enterprise projects’, Socio-Economic Planning Sciences,
Vol. 42, No. 1, pp.31–45.

Norman, B.A. and Bean, J.C. (1999) ‘Genetic algorithm methodology for complex scheduling
problems’, Naval Research Logistics, Vol. 46, No. 2, pp.199–211.

Norman, B.A. and Bean, J.C. (2000) ‘Scheduling operations on parallel machine tools’, IIE
Transactions, Vol. 32, No. 5, pp.449–459.

Olshen, R.A. (1967) ‘Sign and Wilcoxon tests for linearity’, The Annals of Mathematical Statistics,
Vol. 38, No. 6, pp.1759–1769.

Rabbani, M., Aramoon Bajestani, M. and Baharian Khoshkhou, G. (2010) ‘A multi-objective
particle swarm optimization for project selection problem’, Expert Systems with Applications,
Vol. 37, No. 1, pp.315–321.

Santhanam, R. and Kyparisis, J. (1995) ‘A multiple criteria decision model for information system
project selection’, Computers & Operations Research, Vol. 22, No. 8, pp.807–818.

Schaffer, J.D. (1985) ‘Multiple objective optimization with vector evaluated genetic algorithms’,
Proceedings of the 1st International Conference on Genetic Algorithms, L. Erlbaum
Associates Inc.

Schniederjans, M.J. (1995) Goal Programming: Methodology and Applications, Kluwer Academic
Publishers.

Stummer, C. and Sun, M. (2005) ‘New multiobjective metaheuristic solution procedures for capital
investment planning’, Journal of Heuristics, Vol. 11, No. 3, pp.183–199.

Tamiz, M., Jones, D. and Romero, C. (1998) ‘Goal programming for decision making: an overview
of the current state-of-the-art’, European Journal of Operational Research, Vol. 111, No. 3,
pp.569–581.

Veldhuizen, D.A.V. and Lamont, G.B. (2000) ‘Multiobjective evolutionary algorithms: analyzing
the state-of-the-art’, Evolutionary Computation, Vol. 8, No. 2, pp.125–147.

Viana, A. and Pinho de Sousa, J. (2000) ‘Using metaheuristics in multiobjective resource
constrained project scheduling’, European Journal of Operational Research, Vol. 120, No. 2,
pp.359–374.

Villareal, B.K., M.H. and Zionts, S. (1979) ‘An interactive branch and bound procedure for
multicriteria integer linear programming’, Third Conference on Multiple Criteria Decision
Making-Theory and Application.

Wang, C.S. and Uzsoy, R. (2002) ‘A genetic algorithm to minimize maximum lateness on a batch
processing machine’, Computers and Operations Research, Vol. 29, No. 12, pp.1621–1640.

Whitley, D. (2001) ‘An overview of evolutionary algorithms: practical issues and common pitfalls’,
Information and Software Technology, Vol. 43, No. 14, pp.817–831.

Zitzler, E. and Thiele, L. (1998) An Evolutionary Algorithm For Multiobjective Optimization: The
Strength Pareto Approach, Swiss Federal Institute of Technology, TIK-Report, 43.

Zitzler, E., Deb, K. and Thiele, L. (2000) ‘Comparison of multiobjective evolutionary algorithms:
empirical results’, Evolutionary Computation, Vol. 8, No. 2, pp.173–195.

