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Abstract: The project selection and scheduling problem involves the  
allocation of limited resources to competing projects over time to optimise a 
given objective function. However, in practical applications, multiple criteria 
need to be considered, leading us to formulate the problem as a multiple 
objective combinatorial optimisation (MOCO) model. Activities are subject to 
precedence constraints, as well as a budget limiting the capital available in each 
planning period. Interdependencies between projects by which the selection of 
specific subsets of projects may result in cost savings are also represented. We 
propose a genetic algorithm incorporating random keys and an efficient 
decoding procedure into the well-known NSGA-II procedure. The performance 
of this algorithm is evaluated in extensive computational experiments 
comparing the approximations of the Pareto-optimal set it obtains to those from 
NSGA-II. 
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1 Introduction 

Researchers from many different areas have recognised the multiple-criteria nature of 
project selection and scheduling problems (Medaglia et al., 2008; Deb, 2001) whose 
objectives are conflicting in nature, precluding an easily identifiable, unique optimal 
solution. Since partial implementation of projects is often not an option, the problem is 
classified as a multiple objective combinatorial optimisation (MOCO) problem. Most 
project selection and scheduling problems have been shown to be NP-hard even with a 
single objective, and are thus likely to be computationally intractable (Lenstra and 
Rinnooy Kan, 1981). Hence, evolutionary algorithms (EAs) (Zitzler et al., 2000; Fonseca 
and Fleming, 1995; Jaszkiewicz, 2002; Köksalan, 2008), which attempt to obtain  
near-optimal solutions in modest computational time, have been widely used.  
Among these procedures, the non-dominated sorting genetic algorithm (NSGA-II)  
has been widely used for multicriteria optimisation problems since its introduction  
in 2001 (Coello Coello, 2009). However, this algorithm was originally designed  
for unconstrained problems. Deb et al. (2000) suggest ensuring feasibility in the 
implementations of this algorithm for constrained problems by ensuring that feasible 
solutions always dominate infeasible ones, regardless of their objective function values. 
However, due to the large number of solutions generated during the course of any genetic 
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algorithm (GA), examining each constraint in each solution can result in high CPU times. 
This issue is important when using GAs for project scheduling problems because 
conventional crossover or mutation operations can create infeasible solutions. 

In this paper, we extend the NSGA-II procedure to the constrained project selection 
and scheduling problem by using the random keys approach of Bean (1994) to represent 
feasible project schedule sequences. The combination of the random keys and our greedy 
decoding method allows any perturbation of a particular solution by mutation or 
crossover operations to produce feasible offspring. We then apply this algorithm to a set 
of randomly generated instances of a multicriteria project selection and scheduling 
problem and perform computational experiments to evaluate the algorithm performance. 

2 Previous related work 

A MOCO problem involves a number of objective functions to be simultaneously 
minimised or maximised subject to integer or binary decision variables and a number of 
constraints that any feasible solution must satisfy. Such problems arise naturally in many 
applications with a finite, discrete set of feasible solutions. A general formulation of these 
problems is (Ehrgott, 2005) 

{ }min ( ) : ; 1,
{ : , 0 integer; 1, , }

jf x x X j m
X x Ax b x i n

∈ =

= = ≥ =

…
…

 

where fj denotes the jth objective function and x the vector of decision variables. The 
matrix A and vector b define the set of linear constraints. A central concept in MOCO 
problems is the Pareto set, the set of all feasible non-dominated solutions. A solution x* 
is defined to be non-dominated, and hence a member of the Pareto set, if ( *) ( )j jf x f x′ ′<  
for at least one j′ ∈ {1, 2,…,m} and fj(x*) ≥ fj(x) for j ≠ j′. In the remainder of this section 
we review approaches to multiobjective optimisation (MO), emphasising the approximate 
methods that are the focus of this paper; a complete review of this extensive literature is 
clearly beyond the scope of this paper. 

2.1 Solution methods for MOCO problems 

Solution methods for MO are classified based on the involvement of the decision maker 
(Ehrgott, 2000). In a priori methods, all preferences are known at the beginning of the 
decision making process, and the algorithms seek to generate the complete Pareto set  
(or a subset of it) on the basis of these preferences. An example of this approach is goal 
programming (Tamiz et al., 1998; Schniederjans, 1995), where objectives are organised 
in a pre-specified hierarchy and low-priority objectives are optimised subject to their not 
degrading the value of a more important one. In interactive approaches the decision 
maker’s preferences are introduced during the solution process through a series of 
computing steps alternating with interaction with the decision maker. An early example 
of this approach is the interactive branch and bound procedure of Villareal et al. (1979). 
In a posteriori approaches, the set of all Pareto solutions, or an approximation of this set, 
is generated. This set is then reviewed by the decision-maker who selects a solution based 
on their preferences. 
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Due to the NP-completeness of most MOCO problems even with a single objective, 
much literature focuses on approximation (heuristic) algorithms to address large problem 
instances. These algorithms aim at generating an approximate Pareto set (or a subset of it) 
with solutions that either belong to the Pareto set or are sufficiently close to it (Ehrgott, 
2000). Algorithms that generate only a subset of the Pareto set must address the issue of 
diversity among the solutions produced, ensuring that all subregions of the Pareto set are 
adequately represented in the subset presented to the decision maker. 

The most commonly used a posteriori meta-heuristic algorithms have been EAs that 
use simulated evolution to search for solutions to complex problems (Whitley, 2001). 
Chromosomes (usually simple data structures) are used to represent solutions that are 
modified using genetic operators such as crossover and mutation to generate new, and 
hopefully better, solutions. The ability of EAs to handle complex problems with features 
such as discontinuities, multimodality, and disconnected feasible spaces has led to their 
wide use as approximate algorithms for multiobjective programming (Zitzler et al., 2000; 
Fonseca and Fleming, 1995; Jaszkiewicz, 2002; Köksalan, 2008). The success of EAs in 
MO is mainly based on their use of a population of solutions, giving them the ability to 
evolve a diverse population of solutions simultaneously. Veldhuizen (2000) note that EAs 
are nine times more frequently cited for MO problems than other metaheuristic 
approaches. However, EAs have difficulty in handling complex constraints, an issue 
which is the focus of this research. Although EAs have been the most widely used 
techniques in the literature for MO problems (Crainic and Laporte, 1997), several other 
metaheuristic approaches such as simulated annealing, tabu search and memetic 
procedures have been proposed (Ehrgott, 2005; Ehrgott and Gandibleux, 2004), but will 
not be discussed for the sake of brevity. 

The first evolutionary approach to MO was developed by Schaffer (1985) who 
modified the simple tripartite GA based on selection, crossover and mutation (Goldberg, 
1989) by performing independent selection cycles according to each objective. He 
randomly divided each population into M equal subpopulations, each of which was 
assigned a fitness metric based on a different objective function. The advantage of this 
vector-evaluated GA (VEGA) is that is simple and easy to implement. However, because 
each solution in a VEGA is evaluated with only one objective function, solutions near the 
optimum of an individual objective function will be preferred, frequently causing VEGA 
to find only extreme points of the Pareto front (Horn et al., 1994). 

To address this weakness of VEGA, Horn et al. (1994) proposed the niched Pareto 
genetic algorithm (NPGA). This algorithm alters the GA tournament selection where sets 
of individuals are randomly chosen from the current population and the best subset 
placed in the next population. This involves adding Pareto domination tournaments and 
implementing sharing in a non-dominant tournament (i.e., a tie), to determine the winner. 
The results of the niched Pareto technique for three test instances (two test functions and 
an application in hydro systems) were encouraging. However, its performance was found 
to be sensitive to the settings of several parameters such as population size. In particular, 
it is important to have a large enough population to achieve diversity of solutions and to 
sample the breadth of the Pareto front. 

Zitzler and Thiele (1998) proposed an elitist EA called the strength Pareto EA 
(SPEA). These authors introduce elitism by explicitly maintaining an external population 
of non-dominated solutions. A clustering technique is used to improve diversity among 
the non-dominated solutions obtained. However, this clustering technique has higher 
computational burden than the crowding sort algorithms in NSGA-II. 
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Deb et al. (2000) suggested an elitist non-dominated sorting genetic algorithm called 
NSGA-II. In elitist algorithms, as the name suggests, an elite-preserving operator allows 
the best solutions of a population to be directly carried over to the next generation. 
NSGA-II uses an elite-preservation strategy together with a diversity-preserving 
mechanism implemented through a crowding comparison procedure. The authors 
introduce the concept of non-domination levels where all solutions are categorised into 
fronts, the first front being the set of non-dominated solutions, the second front the set of 
solutions dominated only by solutions in front one, and so on. A more detailed 
description of this procedure, which forms the point of departure for the work in this 
paper, is given in Section 4. Among EAs for MO, NSGA-II has been widely used  
(Coello Coello, 2009). Zitzler et al. (2000) performed experiments on six different test 
problems for several EAs including NSGA, SPEA and VEGA, and found that NSGA 
outperformed the other EAs in several quality measures such as the distance to the 
reference set and the distribution of the non-dominated solutions; computational time was 
not considered in this experiment. Due to its wide use in the literature and the evidence, 
albeit limited, of its good performance relative to other EAs, we focus on the NSGA-II 
algorithm in this paper. However, that the key component of our algorithm, the random 
keys encoding of Bean (1994), can be implemented in any of the EAs for MOCO 
problems discussed above. 

2.2 Project scheduling and selection problems 

The classical project scheduling problem is defined as the allocation of scarce resources 
to tasks pertaining to the completion of a project over time (Brucker et al., 1999). In 
contrast, the portfolio optimisation problem involves the constrained allocation of assets 
towards a subset of available projects, with the most common objective being revenue 
maximisation (Black and Litterman, 1992). The project selection and scheduling problem 
considered in this paper shares aspects of both these problems, since it involves the both 
selection of a subset of projects from an existing set of projects and the scheduling of 
those projects over time with constrained resources. 

A comprehensive multicriteria project selection and scheduling model was solved by 
Carazo et al. (2010). These authors consider interdependence between projects in the 
following way: if in period k there are at least mj and at most Mj scheduled projects from 
of a set of projects Aj, then there is an increase or decrease in the value of some attribute 
such as cost. For example, if several projects in a specific set are scheduled there might 
be a reduction in their total cost. Additional constraints such as available resources, 
synergy among projects, and limitations on the number of active projects at a given time 
are also considered, as well as bounds on starting times and precedence restrictions. They 
adapt the scatter search (Glover, 1994) procedure for MO and compare it to SPEA2 
(Zitzler and Thiele, 1998). In their computational experiments SS-PPS outperforms 
SPEA2 based on the absolute value of the first objective function, disregarding values of 
the other two to five objective functions being evaluated. 

Santhanam and Kyparisis (1995) propose a multiple criteria decision model for 
multiobjective information technology project selection. Criteria such as corporate 
priorities, financial benefits and risk are included. Interdependencies are modelled with 
nonlinear terms in the objective functions and resource constraints. They also consider 
precedence constraints. They solve the problem using goal programming with preemptive 
priorities, where the nonlinear terms are linearised with the addition of new variables. 
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A specific algorithm was developed for a constrained multiobjective project 
scheduling problem by Viana and Pinho de Sousa (2000), who use Pareto simulated 
annealing (PSA) (Czyzżak and Jaszkiewicz, 1998) and multiobjective tabu search 
(MOTS) (Hansen, 1997). They conclude that for this problem, MOTS generally yields 
better results than PSA in terms of both solution quality and efficiency. To assess the 
quality of their results, they measure the distance of the solution set to a reference set that 
ideally should be the Pareto-optimum set, but was defined as the set of the best 
approximations obtained by running all versions of the algorithms. 

Gabriel et al. (2006) present a model for optimal project selection under multiple 
objectives and random costs. The criteria they consider are project rank, expected project 
cost, number of managers needed, project risk, impacts on social welfare. They use 
Monte Carlo simulation to incorporate uncertainty in the data, particularly in the costs. 
The authors applied this method to a US Governmental agency where 84 projects were 
initially considered. Another multiobjective model for the selection and timing of public 
projects with constraints related to starting dates for projects, total number of projects to 
be selected, precedence constraints, budget and reinvestment was proposed by Medaglia 
et al. (2008). These authors assign a weight to each criterion and work with a single 
objective problem. They provide a multiobjective mixed integer linear program that can 
be incorporated in a user-friendly decision support system. 

Jaskowski and Sobotka (2006) developed an EA for a multicriteria construction 
project scheduling problem with an adapted Tchebycheff function evaluation. They not 
only scheduled tasks, but also decided which contractors to hire under precedence 
constraints and renewable constrained resources. The authors solved this as two  
sub-problems in parallel. The first problem consists of choosing the contractors using an 
EA; the second problem allocates resources to minimise project duration using a 
heuristic. 

A novel approach to multicriteria optimisation is the interactive analysis of  
multiple-criteria project scheduling problems developed by Hapke et al. (1998). The 
problem is characterised by resource constraints, precedence constraints and project 
performance measures. The first stage of the solution procedure generates an 
approximation of the non-dominated set using PSA. The second stage is an interactive 
procedure where after some computations, the decision maker inputs preference 
information to improve the solutions selected in the next phase. 

Rabbani et al. (2010) propose a discrete multiobjective particle swarm optimisation 
(MOPSO) algorithm for solving the project selection problem with interdependent 
projects and nonlinear objective functions. Their experiments compare the MOPSO to 
SPEA II on ten randomly generated test problems. MOPSO generally achieved solutions 
with higher quality and produces more non-dominated solutions. However, we consider 
this set of problems to be too small to provide comprehensive insight. 

Recent work by Medaglia et al. (2007) proposes a multiobjective EA for a project 
selection problem where projects can be partially funded. The problem includes multiple 
stochastic objectives, project interdependencies and linear resource constraints. The key 
elements of this algorithm are an elitist strategy, parameter-less diversity, a fast stochastic 
dominance mechanism, and an efficient constraint-handling mechanism that takes 
advantage of the linearly constrained solution space. Compared to an alternative approach 
called stochastic parameter space investigation, the results showed that the method is 
faster and more robust, provides higher quality non-dominated solutions (measured by 
the average fraction of these solutions belonging to the reference set, which is obtained 



   

 

   

   
 

   

   

 

   

   116 N. Summerville et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

by aggregating the solutions from both tested algorithms), and is able to consistently 
generate a controlled number of solutions that approximate the efficient frontier. 

Stummer and Sun (2005) developed a new multiobjective metaheuristic solution 
procedure for capital investment planning. This is an integer programming project 
selection model with interdependencies in both objective functions and resource 
constraints. The authors solve the model with ant colony optimisation, tabu search and 
variable neighbourhood search and obtain the entire efficient frontier by enumeration. 
They compare the three algorithms in terms of computation time as well as the 
percentage of non-dominated solutions found. Computational results on benchmark and 
randomly generated test problems show that the tabu search procedure outperforms the 
others if the problem does not have too many objective functions and an excessively large 
efficient set. The improved Pareto-ant colony optimisation procedure performs better 
otherwise. 

In summary, while a wide variety of EAs have been tested on project selection and 
scheduling problems, most experimentation has been restricted to very small numbers of 
problem instances, limiting our ability to draw general conclusions from these studies. In 
addition, all these approaches suffer in various degrees from the problem of managing 
constraints to ensure feasibility, resulting in additional computational burden. In the 
following section we describe the specific problem addressed in this paper, which 
incorporates both project scheduling and selection. 

3 Problem formulation 

The initial motivation for this research was a project selection and scheduling problem 
arising in the tourism sector in Mexico. Each year the State of Michoacán’s Ministry of 
Tourism (MTM), whose responsibility is to promote the development of tourism 
throughout the state, must allocate its annual budget among a set of projects considered 
for implementation throughout the upcoming year in order to achieve several objectives. 
This process involves not only the selection of projects, but also their timing and 
scheduling. The Ministry’s objective is to select projects that will attract more tourists to 
Michoacán while improving the quality of life in Michoacán’s towns and cities within the 
available budget. 

The problem of interest in this paper thus involves the simultaneous selection and 
scheduling of a number of projects from a given set of candidate projects linked by 
precedence constraints under multiple objectives. In addition, synergies are identified 
between pairs of projects such that if two projects i and j are both selected for execution 
at the same time, cost reductions may result. The primary constraining resource is 
financing, with a limited budget available in each period. However, unused funds from a 
period can be carried forward into subsequent periods. We define the following notation: 

Decision variables 

xit a binary decision variable that takes the value of 1 if project i is started in period t, 
and 0 otherwise. We shall denote the matrix of all xit values corresponding to a 
specific solution by X. 
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Parameters 

T number of time periods considered 

n number of projects 

m number of objective functions 

bijt the benefit generated by investment in project i during period t for criteria j 

uik the reduction in investment generated by synergy between projects i and k if both are 
started at the same time 

S the set of all pairs (i, j) of interdependent projects 

Qi the set of all projects that must be started before project i 

D parameter specifying the target density of the precedence constraint graph 

qik binary parameter taking the value of 1 if project i must precede project k, and  
0 otherwise 

cil the investment needed for project i during its lth period after the start of its execution 

rw budget available for period w 

yw funds available at the beginning of period w 

di duration of project i in units of time periods. 

An integer programming formulation of this problem is as follows: 

1 1

max ( ) , 1, ,
n T

i ijt it
i t

f X b x j m
= =

= =∑∑ …  (1) 
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Constraint set (2) represents the precedence constraints, while (3) limits the funds 
available in each period. Synergy between projects is represented by the decrease  
(or increase) uik in the total cost for projects i and k when both are selected. The first 
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summation in (3) represents all the costs that need to be covered for the projects selected 
to start in the time interval up to and including period w. For instance, the cost of starting 
two projects at the same time might be less than the sum of their individual costs if the 
same infrastructure is used. This interdependence is considered without regard to the 
starting time period of the projects and is represented as a quadratic term in (3). This 
constraint could be linearised using the approaches discussed in Anstreicher (2003), but 
this linearisation does not yield any significant advantage for the EA approach we adopt. 
We assume that unallocated funds from previous periods remain available for future 
projects. Constraints (4) ensure that a project cannot be started twice. A project started in 
a particular period does not have to be finished in the same period, but can be continued 
in the following period. Note that this model involves two different interdependencies 
between projects, precedence constraints and cost synergies, of which the latter are 
represented in the set S of interdependent pairs of projects. 

The formulation above clearly shows the NP-hard structure of the problem due to the 
presence of the knapsack-like budget constraints (3). Hence, we follow the literature in 
using an EA to generate an approximation to the set of Pareto-optimal solutions. The 
details of our proposed solution algorithm are given in the next section. 

4 The PS-NSGA-II algorithm 

We first review the NSGA-II algorithm of Deb et al., which has proven successful in 
addressing a range of MOCO problems (Deb, 2001). However, that procedure is designed 
primarily for unconstrained problems, and its direct application to the problem we 
address results in high computational burden. We then use the random keys approach of 
Bean (1994) to obtain an enhanced solution representation that avoids the need for  
time-consuming feasibility checks within the GA. We first define the terminology used in 
the rest of the paper. 

A solution X is represented by a binary n × T binary matrix whose element xij = 1 if 
project i is selected to begin in time period t and 0 otherwise. Here n denotes the number 
of projects available for consideration and T the total number of time periods. A solution 
value f is an m-dimensional vector, where m is the number of objective functions, whose 
j′th entry is obtained by evaluating the solution matrix X for criterion fj. The solution 
matrix X is thus a natural candidate for use as a chromosome representing a solution 
within the GA. However, as we show below, this representation creates difficulties due to 
its inability to maintain feasibility when subjected to genetic operators such as mutation 
and crossover. 

In the NSGA-II algorithm for unconstrained problems an initial population is 
generated with P random chromosomes. The non-dominated sorting procedure is then 
applied to generate different fronts, each of which represents a distinct level of  
non-domination. This non-dominated sorting procedure involves two entities: a 
domination count ni, the number of solutions by which each solution i is dominated, and 
the set Si of solutions dominated by solution i. The procedure examines each member of 
the current population, performs the domination evaluation and updates the domination 
count. After the procedure is completed, the fronts represent an ascending level of  
non-domination, with front 1 (with domination count equal to 0) containing all the  
non-dominated solutions. 
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As an example, consider the following two solution values for four solutions x1 
through x4 in a maximisation problem where fj(xk) is the solution value for criterion j in 
solution k: 

( ) ( ) ( ) ( )1 2 3 4[4, 5] [6, 4] [3, 1] [8, 9]f x f x f x f x= = = =  

We see that f1(x4) = 8 ≥ f1(xk) ∀k and f2(x4) = 9 ≥ f2(xk) ∀k ∴ x4  x1, x2, x3, where  
represents domination. By similar reasoning, we can conclude x1  x3 and x2  x3. 
Therefore, x4 ∈ Front1; x1, x2 ∈ Front2 and x3 ∈ Front3. 

Once the fronts have been identified, a predefined number of chromosomes are 
selected, giving preference to lower ranked fronts. Solutions from a higher numbered 
front are not included until all solutions in lower numbered fronts have been included. If 
there are more than the required number of chromosomes in a front, a crowding sort 
procedure is performed to select a subset of these based on their distance from each other 
to ensure coverage of the entire Pareto set. The crossover and mutation operators are then 
applied, generating the new population, together with the elite solutions from the 
previous population. If the stopping criterion is satisfied, the algorithm stops; if not, 
iterations continue. Chromosomes are selected for crossover with a specified probability, 
and for mutation with a specify probability of mutation. These solutions, together with 
the elite solutions from the previous population, form the new population. Details of the 
generic NSGA-II can be found in Deb (2001). 

Our implementation of NSGA-II for the problem under study uses the natural 
chromosome representation derived from the MOCO formulation of the problem given in 
Section 3. The chromosome takes the form of a matrix X whose entry xit indicates 
whether project i is started in period t. In order to ensure that no project is started more 
than once, our crossover operator proceeds by copying entire rows of the matrix as a unit 
between parent solutions and their offspring. Specifically, we apply one-point crossover 
by selecting two parents for crossover using a crossover probability of 0.8. We then 
randomly select a row index k assuming equal probability of selection for each row. The 
offspring of the two parents is then constructed using rows 1 through k of the first parent 
and rows k + 1 through n of the other. Mutation is implemented by randomly changing 
the period in which a project is to be started. Once a chromosome is selected for 
mutation, using a mutation probability of 0.2, a row k is randomly selected, again 
assuming all rows have equal probability of selection. Suppose that within this row we 
initially have xkt = 1. The mutation operator sets xkt = 0 and xgt = 1, where g is randomly 
selected from a discrete uniform distribution on the set {1,...,T}. The mutation and 
crossover probabilities were explored in preliminary experiments using a limited number 
of problem instances, and these values gave satisfactory results. 

The difficulty in applying the NSGA-II procedure to our problem arises from the loss 
of feasibility during application of the mutation and crossover operators, as illustrated in 
the following example. The natural chromosome representation for our project selection 
and scheduling problem that would be used by NSGA-II is the X matrix defined above. 
Suppose we wish to crossover two solutions X1 and X2, with four projects and three time 
periods. Even if the crossover is performed by moving entire rows in order to avoid 
starting projects more than once, we can obtain the outcome illustrated in Figure 1. 
Specifically, the budget constraint might be violated by starting several projects in the 
same period (period 2 in this example), or the precedence constraint requiring that  
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project 3 has to be completed before project 2 might be violated by starting project 3 
ahead of 2. 

Figure 1 Example of infeasible crossover 

 

The remedy for this situation suggested by Deb (2001) is to incorporate the feasibility 
check in the front generating procedure such that an infeasible solution is always 
dominated by a feasible one. However, over the course of many NSGA-II iterations the 
algorithm consumes a great deal of time evaluating infeasible solutions. In our 
experiments with NSGA-II, most of the solutions evaluated in our early experiments 
were infeasible due to the multiple constraints linking projects and time periods. Our 
computational results also indicate that this may lead to premature convergence, resulting 
in a set of solutions that are in fact not actual Pareto solutions. 

4.1 Random keys 

Bean (1994) describes random keys as a “…representation that encode a solution with 
random numbers. These values are used as sort keys to decode the solution. Random keys 
eliminate the offspring feasibility problem by using chromosomal encodings that 
represent solutions in a soft manner. These encodings are interpreted in the objective 
evaluation routine in a way that avoids the feasibility problem”. This approach has been 
applied successfully to a variety of complex scheduling problems, including the 
minimisation of total tardiness on parallel machines with sequence-dependent setup times 
(Norman and Bean, 1999), parallel machine tools (Norman and Bean, 2000), and single 
and parallel batch processing machines (Malve and Uzsoy, 2007; Wang and Uzsoy, 
2002). 

Under this representation, the two chromosomes above might be represented by the 
vectors K1 = [0.9674, 0.4673, 0.2370, 0.0321] and K2 = [0.5737, 0.2230. 0.1597, 0.7192] 
where each element is a random variate uniformly distributed between 0 and 1. Each of 
these vectors is initially decoded as sort keys R that correspond to a permutation of the 
projects being considered. In the example above, the vector K2 is decoded as R2 = [2, 3, 4, 
1] representing a permutation of the projects where project 2 is first, followed by 3, 4 and 
1 in that order. When implementing crossover using random keys, two chromosomes are 
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randomly selected for crossover with a specified crossover-probability. Once the two 
chromosomes have been scheduled for crossover (K1 and K2 in Figure 2), a random 
number of elements from each chromosome are selected (for this example, the first two 
first elements in these chromosomes). The crossover is then performed as illustrated in 
Figure 2: the two elements are taken from K1 and substituted for the two elements in K2, 
generating a new chromosome K3. 

Figure 2 Crossover example using random keys 

 

To implement mutation, a chromosome is randomly selected for the mutation procedure 
with a mutation probability, a random number of elements are selected and new values 
for these selected elements are randomly generated from a Uniform[0, 1] distribution. 

4.2 Greedy decoding algorithm 

The random keys encoding described allows us to search over all permutations of the 
projects, ensuring that only feasible permutations will be generated. In order to provide 
feasible solutions to the project selection and scheduling problem we need a decoding 
mechanism that will map a random keys chromosome into a feasible solution. This is 
accomplished using a greedy decoding algorithm, which is described below. 

The input for the greedy decoding algorithm is the vector K of random keys, decoded 
into a permutation R of the projects as described above. Given such a permutation of the 
projects, the heuristic first randomly selects one of the objective functions with respect to 
which the schedules will be evaluated. The algorithm then considers the projects one by 
one in the order in which they appear in the Rank. Each project, when selected, is 
tentatively scheduled to begin in the time period that generates the best value of the 
selected objective function. Once the project has been tentatively scheduled, all 
constraints are checked to determine whether this assignment is feasible or not. If any 
constraint is violated, the project is tentatively rescheduled to the time interval that yields 
the next best value of the randomly chosen objective. If no interval permits a feasible 
assignment, this project is discarded and the next project in the sequence is selected. The 
pseudocode is given in Figure 3 using the notation defined in the previous section, with 
additional notation defined in the figure. The number of operations required to check 
feasibility is O(Tn2), where T is the number of periods and n the number of projects. 

It is straightforward to see that all solutions generated in this manner from the random 
keys chromosomes are feasible. This is due to the feasibility evaluation performed in the 
greedy decoding algorithm; if a particular project is scheduled for a particular time period 
and the feasibility evaluation fails, then the project is not scheduled for this time period. 
The procedure is greedy in nature, since a project that is discarded is never reconsidered. 
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Figure 3 Pseudocode for greedy decoding algorithm 

(At iteration iIter, given KEYSiIter) 
 
For i* such that keyi*,iIter > all keyi,iIter 

Set m* = RANDU(1, m) 

While TIMES ≠ Ø 

Select t*, such that bim*t* > bim*t ∀i, t 
Set xit* = 1 
Evaluate feasibility 
If not feasible 

Do soli*,t*,iIter = 0 
Remove t* from TIMES 

Else break while 
End if 

End while 
Remove keyi*,iIter from KEYSiIter 
End for 
 
soli,t,iIter: element of the solution corresponding to project i, time period t and iteration iIter 
keyi,iIter: element of the KEYS set corresponding to project i and iteration iIter 
KEYSiIter: set of all random keys from iteration iIter 
TIMES: set of time periods 

The components of our proposed algorithm, PS-NSGA-II, are now complete. An initial 
population is created by generating a population of N random chromosomes, where N is a 
parameter defined by the user. Each random chromosome is represented by a sequence of 
n values between 0 and 1, using the random keys encoding described above. We then use 
the greedy decoding algorithm to decode each sequence into a feasible solution matrix 
Xij. After all chromosomes have been decoded, we perform the non-dominated sorting of 
Deb (2000) to generate different fronts, and select the number of solutions we need, 
giving priority to lower rank fronts. If the number of solutions in the last front exceeds 
the number of solutions we still need to obtain, Deb’s crowding sort procedure is 
performed. Mutation and crossover operators are applied to the chromosomes creating the 
new population, where the stopping criterion is evaluated. The pseudocode for  
PS-NSGA-II is given in Figure 4 using the following notation: 

• N: population size 

• IT: maximum number of iterations to be performed before termination of algorithm 

• FRONTiIter,fFront: set of solutions in front fFront at iteration iIter 

• SFRONTiIter,fFront: sorted subset of FRONTiIter,fFront 

• KEYSiIter: set of all random keys at iteration iIter 

• KEYSCROSSiIter: set of random keys obtained from crossover iteration iIter 
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• KEYSMUTiIter: set of random keys obtained from mutation in iteration iIter 

• SOLiIter: set of solutions at iteration iIter. 

We now discuss the design and results of the computational experiments used to compare 
the performance of NSGA-II and PSNSGA-II in the next section. 

Figure 4 Pseudocode for the PS-NSGA-II procedure 

Set iterCount = 1 
Generate set of initial random keys KEYS0 

Set solutions matrix SOLiterCount = Ø 
While iterCount ≤ IT 

Set FRONTfCount = Ø 
Set numSol = 0 
Set fCount = 1 
Decode KEYSiterCount–1 to SOLiterCount using the greedy method for each rank 
Obtain FRONTij with non-dominated sorting algorithm 
While numSol < N 

If | FRONTfCount | + numSol ≤ N 
Add all solutions from FRONTfCount to SOLiterCount 
numSol = numSol + | FRONTfCount | 

Else 

Create SFRONTfCount ⊂ FRONTfCount with crowding sort procedure 
Add solutions from SFRONTfCount to SOLiterCount 
numSol = N 

End if 
End while 
Obtain KEYSiterCount from SOLiterCount 
Perform crossover to KEYSiterCount to get KEYSCROSSiterCount 
Perform mutation to KEYSiterCount to get KEYSMUTterCount 

KEYSiterCount = KEYSiterCount ∪ KEYSCROSSiterCount ∪ KEYSMUTiterCount 
iterCount = iterCount + 1 

End while 

5 Experimental design 

5.1 Generation of random test instances 

We explore the performance of our PS-NSGA-II algorithm through computational 
experiments with randomly generated test instances. The test instances are generated in a 
manner that allows us to systematically vary the properties of the problem instances that 
we believe will affect the performance of the algorithms. As mentioned above, for 
simplicity of analysis we restrict our attention to two objective functions whose 



   

 

   

   
 

   

   

 

   

   124 N. Summerville et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

coefficients are generated to ensure that the objective functions are in conflict, requiring 
effective generation of the Pareto set. Since the emphasis of the paper is on extending the 
NSGA-II procedure to handle constraints more effectively, we systematically vary the 
density of the precedence constraints and the strength of the interdependence between 
projects. The available budget is varied to control the degree to which the budget 
constraints are binding, which will affect the number of feasible solutions available to the 
algorithms. Finally, we also vary the size of the problem instances, determined by the 
number of projects and the number of time periods in the planning horizon, to examine 
their effect on the computational requirements of the two algorithms compared. The 
problem instances generated are somewhat smaller than the real-world problem (which 
had of the order of 50 projects and four objective functions) in order to permit multiple 
computational experiments examining a wider range of instance and algorithm 
characteristics than would otherwise be possible. We use uniform distributions (both 
continuous and discrete) in order to have better control of the values of these parameters, 
and because the uniform distribution assigns equal probability to extreme values, 
allowing for the generation of quite diverse problem instances. We shall denote a 
continuous uniform distribution over the interval [a, b] by U[a, b], and a discrete uniform 
distribution over the integers between a and b by DU[a, b]. 

We begin by generating the contribution bi1t of each project i to objective function 1 
as a random variate from a U[0, 100] distribution. The contribution bi2t of the project to 
the second objective is then generated such that bi2t = 100 – bi1tU[0, 1] in order to ensure 
that the two objective functions are in conflict. 

To obtain the savings uik obtained by starting projects i and k in the same time period, 
we first randomly generate the number of interdependencies NI from a discrete uniform 
distribution with parameters 

~ 0,
(3, 6)
nNI DU round

DU
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

where n is the total number of projects and round denotes the operation of rounding to the 
nearest integer. The number of interdependencies must be related to the number of 
projects in the instance. In order to ensure variability in the number of interdependencies 
in each randomly generated instance, the upper bound of this discrete uniform 
distribution is also a random variable. We use the pseudocode given in Figure 6 to 
generate a matrix U = [uik] containing NI non-zero elements representing the cost savings 
obtained when projects i and k are started in the same period. We use the numbering of 
the projects in order to populate only the upper triangle of the savings matrix to save 
computational time during the main algorithm run. 

The qik representing the precedence relationships are then generated as suggested by 
Hall and Posner (2001) using a parameter D specifying the target density of the 
precedence constraint graph, i.e., the probability that a given arc (i, j) exists in the 
precedence graph. The probability Pij that a given arc (i, j) exists in the precedence graph 
is then given by 

( )
1

1

(1 )
1 1 (1 )

j i

ij j i

D DP
D D

− −

− −

−
=

− − −
 

The project costs per time period cil are random variates from a U(0, 100) distribution. 
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Figure 5 Pseudocode for the generation of the interdependences matrix 

For i = 1 to NI 
Sav ~ ContinuousUniform(0, 100) 
I1 ~ DiscreteUniform(n) 
I2 ~ DiscreteUniform(n) 
Min = minimum(I1, I2) 
Max = maximum(I1, I2) 
uMin,Max = Sav 

End for 

Budgets rt for each time period t are randomly generated to ensure that the budget 
constraint will be sufficiently restrictive that the problem instance will not be trivial to 
solve, but not so restrictive that there are no feasible solutions. If we have 20 projects, 
and the cost for a project for a particular period is uniformly distributed in the interval  
(0, 100), the available budget for period t is a uniform random variate in the interval  
(0, 100) multiplied by a discrete uniform random variate over the interval (1, 10), 
ensuring that, on average, the available budget will be enough for 5.5 projects, i.e., 

( )(0, 100) 1, ( )tr U DU round n BL= ∗ ∗  

where BL represents the tightness of the budget, the smaller the BL, the tighter the 
budget. The duration di of project i is a discrete uniform variate over the interval (1, T) 
where T is the number of periods in the planning horizon. 

We evaluate the performance of NSGA-II and PS-NSGA-II on the basis of both 
solution quality and CPU time. The discussion of solution quality is clearly complicated 
by the multiobjective nature of the problem. Due to the particular characteristics of our 
instances and algorithms, we adopt the approach of creating a reference set from 
solutions being generated by both algorithms and choosing the Pareto frontier of this set 
(Hansen, 1998). For a given instance, the solutions from all different runs from  
both algorithms (for different number of iterations, population, etc.) are collected. The 
non-dominated sort procedure is performed in order to obtain front 1, which becomes the 
reference Pareto frontier. For each run, the percentage of solutions that belong to this 
reference Pareto frontier, denoted by %NDS, is considered as the response variable 
representing solution quality in this experiment. 

It is widely recognised in the literature that the performance of EAs is significantly 
affected by the choice of values for the parameters used in the algorithm. The population 
size at each generation is important to ensure that a sufficiently diverse set of solutions 
can evolve without leading to premature convergence, while maintaining a modest 
computational burden. The choice of mutation and crossover probabilities also 
determines the trade-off between intensification of the search in promising areas of the 
solution space and diversification to ensure all portions of the space are examined. 

The termination criterion used is also important to ensure that the algorithm continues 
to search as long as worthwhile new solutions are being discovered, and that the 
procedure terminates when there is a low probability of additional worthwhile solutions 
being found. Both the algorithms tested thus use a stopping criterion composed of two 
elements: 
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• NewNDS: the minimum number of non-dominated solutions in the new population 
for the algorithm to continue iterating 

• NumIter: number of iterations to stop: the minimum number of consecutive iterations 
during which the algorithm did not find at least NewNDS. 

Thus, if NewNDS = 2 and NumIter = 5, the algorithm will stop after five consecutive 
iterations in which a total of less than 2 new non-dominated solutions at each iteration 
have been obtained. The tolerance parameter ε is used in the dominance evaluation: 
solution x is treated as dominating solution y if 

• 
( ) ( )

( )
j j

j

f f
ε j

f
−

≥ ∀
x y

x
 

• 
( ) ( )

( )
j j

j

f f
ε

f
−

>
x y

x
 at least one j. 

Thus, a larger value of ε ought to result in earlier termination with a less precise 
approximation of the Pareto set. 

A number of preliminary experiments were conducted on a set of small instances with 
up to 20 projects and 12 time periods were conducted, varying the values of the algorithm 
parameters discussed above. Smaller problem instances were used in order to allow 
identification of the actual Pareto set by explicit enumeration. We initially used a 
different stopping rule in these experiments, under which the algorithms terminated if no 
further non-dominated solutions were identified in a specified number of iterations, 
where the number of iterations was proportional to the population size. Examination of 
these results indicated that both algorithms were spending a lot of time generating 
solutions that different only very slightly from previously encountered Pareto solutions, 
motivating the enhanced stopping criterion described above. The results of these 
preliminary experiments led to our final experimental design that we discuss in terms of 
two groups of experimental factors, those related to the algorithms and those related to 
the problem instances. 

5.2 Experimental design 

The instance factors that were included in the full experimental designed are listed  
in Table 1. Parameters BL and D are used as defined in the previous section. We 
implemented a full factorial experiment, creating five independent problem instances for 
each combination of these factors, for a total of 80 instances. The algorithm factors 
explored in the final experiment are summarised in Table 2. All levels of each algorithm 
parameter were applied to both algorithms compared. 
Table 1 Experimental factors related to problem instances 

Instance Level 1 Level 2 

Number of projects 20 30 
Time periods 6 12 
Budget level (BL) 0.5 1 
Interdependence (D) D ~ U(0, 0.05) D ~ U(0.05, 1) 
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Table 2 Experimental factors related to algorithms 

Factor Level 1 Level 2 

Algorithm NSGA-II PS-NSGA-II 
Population size 20 50 
Stopping rule settings (NewNDS – NewIter) 5 – 5 8 – 3 
Tolerance parameter for dominance comparisons 0.01 0.1 

With 16 algorithm configurations, five algorithm replicates for each configuration and  
80 instances, the full factorial experiment contains 6,400 observations (runs). 

The NSGA-II algorithm was implemented as described in Section 2 using the solution 
matrix X defined in Section 3 as the chromosome. The PS-NSGA-II algorithm was 
implemented as described in Section 4. Due to the random nature of the GAs each 
algorithm was run on each instance five times with independent random number seeds. 
All runs were performed on a Lenovo computer with the following characteristics: Intel® 
Core™ i7-2620M CPU at 2.7 GHz with 8 GB RAM. The MATLAB version used was 
version R2013b. 

6 Results 

Examining the assumptions of classical analysis of variance (ANOVA) related to 
constant variance and independence of the error terms, we concluded that our data satisfy 
these assumptions. However, regarding the normal distribution of the error terms, the 
Anderson test gave a p-value of 0.05, rejecting the null hypothesis that the residuals are 
normally distributed. Thus statistical analysis using ANOVA is not appropriate. Some 
transformations, as taking the square root and logarithm, were performed in other to 
normalise the residuals; the behaviour did improve, but the assumption was still not met. 
Hence, we analyse the outcome of the experiments using non-parametric tests (Olshen, 
1967). In particular, the Kruskal-Wallace test that we use divides the overall set of 
observations into a number of independent samples such as the observations obtained 
under different levels of stopping rule, algorithm, and so on, and computes the ranking of 
each observation within the combined sample. The null hypothesis tested is that the 
rankings in all samples come from the same population. Extensive discussion of this and 
other non-parametric tests can be found in Conover (1980). 

6.1 Solution quality 

The solution quality is measured as the percentage of non-dominated solutions (%NDS). 
To calculate this percentage, we compute the following quantities: 

• all_solutionsi: the total number of distinct solutions obtained from both algorithms 
for a given instance i 

• opt_solutionsi: the total number of Pareto solutions found by both algorithms 

• run_opt_solutionsij: the subset of Pareto solutions for instance i generated by the run 
j, where a run is defined as a unique combination of algorithm factors. 
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Then, the %NDSij is defined as run_opt_solutionsij / opt_solutionsi. 
Table 3 Factors influencing % of non-dominated solutions 

Factor MSE Chi-squared test 
statistic p-value 

Algorithm 3.54E+09 1,892.42 0.00 
Budget 1.12E+08 59.97 0.00 
Population 1.03E+08 54.94 0.00 
Projects 8.75E+07 46.83 0.00 
Tolerance factor for stopping rule 4.88E+07 26.12 0.00 
Interdependence 6.54E+06 3.50 0.06 
Stopping rule 2.31E+06 1.24 0.27 
Algorithm replicate 3.34E+05 0.71 0.95 
Time periods 3.05E+04 0.02 0.90 

Table 3 summarises the results of the Kruskal-Wallis test (Conover, 1980) across 
different factors on the percentage of non-dominated solutions %NDS, where the p-value 
indicates the level of statistical significance at which the two levels of each experimental 
factor can be distinguished. The difference between the two algorithms accounts for the 
majority of the variance, implying a statistically significant difference between NSGA-II 
and PS-NSGA-II. The most striking finding in these experiments was that all solutions 
generated by NSGA-II were dominated by those from PS-NSGA-II. These results suggest 
that NSGA-II is converging prematurely, before it can reach the solutions identified by 
PS-NSGA-II. A contributing factor to this behaviour is the large number of infeasible 
solutions considered by NSGA-II, which cause the stopping criterion to be satisfied 
prematurely. 

As would be expected, the instance related factors of budget and number of projects 
have significant effect on the %NDS found by each algorithm. This is due to the fact that 
larger instances require a larger population to maintain a suitable level of diversification 
and thus prevent premature convergence without examining all areas of the Pareto 
frontier. A restrictive level of the budget factor impacts the number of feasible solutions, 
resulting in fewer Pareto solutions overall and making it more difficult for the algorithms 
to generate a comprehensive representation of the Pareto set in a given CPU time. 

The factors that do not have a significant impact on %NDS are also of interest. The 
interdependence factor describing the level of interaction between projects in the 
objective functions has a p-value of 0.06, which suggests that this factor does in fact have 
an impact on performance, but that this impact is variable across the overall experiment. 
The stopping rule does not have a significant impact, which suggests that both setting are 
achieving essentially the same level of coverage of the search space in terms of Pareto 
solutions. Further research is necessary to examine whether the set of solutions generated 
are largely the same, or the two different stopping rules lead to different Pareto frontiers. 
Finally, the lack of significance of the algorithm replicate factor in encouraging, since it 
indicates consistent performance by both algorithms on a given instance across 
independent replications of each algorithm. 
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6.2 Analysis of computation time 

Due to the violation of the linear model assumptions, we will not proceed with regular 
statistical analysis such as ANOVA, we again use non-parametric tests. 

Table 4 summarises the average computation times (in seconds) for each algorithm by 
the main instance factors. NSGA-II outperforms PS-NSGA-II in computational time, but 
as explored in previous section, PS-NSGA-II yields significantly better solution quality. 
An average time of 362 seconds (versus 111 seconds for the NSGA-II) for the larger 
instances is an acceptable run time, given the improvement in the quality of solutions 
presented above. The lower CPU time of the conventional NSGA-II does not, in our 
opinion, represent higher computational efficiency, but rather premature termination of 
the algorithm due to its inability to detect additional non-dominated solutions. 
Table 4 Computational time (seconds) by instance and algorithm 

Projects Time periods NSGA-II time PS-NSGA-II time 

20 6 32.43 128.94 
 12 72.72 210.89 
30 6 53.62 208.99 
 12 111.30 362.23 

Table 5 summarises the influences of each experimental factor on the average CPU time. 
As would be expected, the most significant factors are those determining the size of the 
search space (number of projects and number of time periods) and the number of feasible 
solutions (budget level and project interdependence). The impact of the population size is 
also significant since this determines the amount of computation taking place at each 
generation of the algorithms. The lack of impact of the stopping rule once again suggests 
that the two settings result in approximately the same number of solutions being searched 
overall. The lack of impact of the algorithm replicate factor once again suggests 
consistent performance by each algorithm across independent replications. 
Table 5 Factors influence on CPU time 

Factor MS Chi-squared p-value 

Population 1.17E+10 3,436.39 0.00 
Algorithm 6.04E+09 1,768.32 0.00 
Time 1.40E+09 409.61 0.00 
Projects 7.31E+08 214.10 0.00 
Stopping 5.74E+08 168.18 0.00 
Budget 5.63E+07 16.49 0.00 
Interdependence 3.40E+07 9.95 0.00 
Epsilon 8.86E+06 2.60 0.11 
Replicate algorithm 7.73E+04 0.09 1.00 

To further explore the differences in CPU time, we analysed the impact of the number of 
generations on the CPU time for both algorithms, which is shown in Figure 6. While the 
CPU time per run is higher for NSGA-II, the average of number of iterations required to 
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satisfy the stopping criterion is less for NSGA-II, confirming our hypothesis of NSGA-II 
converging prematurely. 

Figure 6 Computational time vs. number of iterations (see online version for colours) 

 

To further examine the behaviour of the CPU time we made runs fixing the CPU time 
and number of iterations and discarding the stopping rule used in the main experiment. 
Due to the long CPU times required this was done for a single instance to allow detailed 
exploration of the behaviour of the two algorithms shown in Figure 7. While this analysis 
is clearly does not permit any statistical generalisations, we believe it provides some 
indication of the performance of the algorithms. The results for this instance show that 
when the number of iterations is fixed at 100, NSGA-II does not return any Pareto 
solutions at all, and finds only one when allowed a CPU time limit of one hour. In 
contrast, PS-NSGA-II finds three Pareto solutions after an hour, and two of the same 
three when run for 100 iterations. This behaviour is not surprising, given that NSGA-II 
generates many infeasible solutions, while PS-NSGA-II searches over feasible solutions 
due to the use of random keys. The example also suggests that the number of Pareto 
solutions for the problem instances in our experiments may be quite small, making them 
quite difficult test instances. 

Figure 7 Long run test results (see online version for colours) 
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The results summarised above suggest that the proposed PS-NSGA-II algorithm yields 
substantially better solution quality as measured by %NDS. The computational time of 
the NSGA-II procedure is substantially less, but this advantage is more than offset by the 
much lower number of Pareto solutions obtained by the procedure. The key different 
between the two procedures compared is their treatment of infeasible solutions. The  
PS-NSGA-II procedure uses the random keys representation to reduce the number of 
infeasible solutions encountered. By searching over the permutations of projects that are 
then scheduled in a greedy fashion based on the permutation, a feasible solution can be 
constructed for each chromosome much more rapidly than is possible by checking all 
constraints individually for violations. This allows the PS-NSGA-II algorithm to explore 
more of the solution space for a given population size, resulting in the higher number of 
Pareto solutions encountered. 

7 Conclusions and future directions 

Motivated by a real-world application in the tourism sector, we present a comprehensive 
formulation for the multicriteria project selection and scheduling problem including 
interdependencies between the projects, in terms of synergies, as well as precedence; 
allowing the benefits of a project to depend on the time periods in which it is scheduled; 
and the costs to be time dependent as well. Our proposed PS-NSGA-II algorithm uses the 
random keys encoding together with a greedy decoding heuristic to ensure that all 
solutions in a population are feasible, allowing the procedure to generate more Pareto 
solutions in less time. 

A number of interesting directions for future research arise from these experiments. 
The premature convergence of NSGA-II suggests the exploration of more flexible 
stopping criteria for both algorithms compared; it may well be the case that longer runs of 
PS-NSGA-II may yield additional Pareto solutions over those obtained with the current 
parameter set. A more extensive study of the test instances that reveals the number of 
feasible solutions would be of interest; we conjecture that many of the test instances have 
relatively few feasible solutions which makes them particularly challenging for NSGA-II. 
Finally, the extension of these experiments to a larger number of objective functions will 
also provide insight into the relative effectiveness of the random keys representation. 
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