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Abstract: This article analyses the impact of single-till and dual-till price-cap 
regulation of railway stations on welfare in case of an outside competitor for 
commercial services. It can be shown that dual-till instruments dominate for 
lower levels of fixed costs, whereas single-till regulation performs better for 
higher levels of fixed costs. The specified recommendation depends, however, 
additionally on the particular assignment of fixed costs. Since we yield two 
solutions for charging in case of a single-till regulation, the regulatory body 
will be obliged to adopt a dual-till regulation for all ranges of fixed costs, 
unless the station manager can be committed to apply the welfare maximising 
single-till price-cap. 
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1 Introduction 

In the process of privatisation of rail infrastructure, service facilities like shunting yards, 
freight terminals or railway stations are subject to different kinds of economic 
regulations. Service facilities exhibit typical characteristics of natural monopolies. Hence, 
regulatory authorities do not only consider the access to infrastructure, but also, the level 
of infrastructure charges being levied for the use of railway infrastructure by the 
infrastructure manager.1 

Especially in the case of railway stations, the station manager’s business activities are 
not exclusively defined on traffic services. Here, shopping areas become more and more 
a must have (Luică, 2011). As the success of commercial activities at railway stations 
depends basically on the demand for traffic services, a station manager will consider the 
mutual dependencies of both business units for adjusting a profit-maximising level of 
usage charges and prices for commercial services (e.g., rents). The feasibility of an 
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independent pricing for commercial services above the market price is driven at least 
partially by a spill-over of the monopolistic market power in traffic services to 
commercial activities. This leads to the question, whether a regulation of usage charges 
should focus solely on regulated traffic services (dual-till) or consider profits in other, 
non-regulated business units, too (single-till). 

Discussions concerning the regulation of traffic stations have been rare. Only the 
regulatory body in the UK decided to apply a single-till approach on Network Rail’s 
activities, given its statutory duties (Office of Rail Regulation, 2008). In Germany  
single-till and dual-till instruments have been at least recognised as challenging  
aspects within the framework of establishing an incentive regulation (Mitusch et al., 
2011). 

However, there is a vital debate between airport managers and airlines on single-till 
and dual-till regulation with regard to the policy design of regulating landing charges. 
Starkie and Yarrow (2000) already indicated that there is a strong degree of demand 
complementarity between aeronautical and retailing activities, which will give incentives 
to set landing charges lower than in case of a stand-alone facility. Concerning the cost 
allocation process, employing single-till instruments seems to be advantageous over  
dual-till regulation, since monopoly rents from commercial activities are shifted to the 
users, who also created these revenues as passengers (Niemeier, 2009). Hence, a  
single-till approach is more representative of the outcomes in a competitive environment 
(Australian Competition & Consumer Commission, 2001). Furthermore, empirical results 
show a correlation of the onset of single-till instruments with lower levels of aeronautical 
charges (Bilotkach et al., 2012). Additionally, single-till regulation is often assumed to be 
more simple to control as there is no need to determine the costs of traffic services 
separately from other business activities (Niemeier, 2009; Civil Aviation Authority, 
2000). On the other hand single-till regulation gives less incentives for efficient 
investments to develop commercial services (Australian Competition & Consumer 
Commission, 2001) and only shifts monopoly rents without increasing the overall 
efficiency (Niemeier, 2009). Even though costs have to be separated under a dual-till 
regime, this scheme requires less information than the single-till regime. The latter needs 
to extend the scope to non-traffic activities, e.g., the differing costs of capital (Starkie and 
Yarrow, 2000; Niemeier, 2009). The most basic argument against a single-till approach is 
probably given by the fact that commercial activities, which are formally excluded from 
the scope of regulation, become implicitly a part of regulation (Starkie and Yarrow, 
2000). Beside legal concerns regarding an extended range of – implicitly – regulated 
activities, a single-till approach requires a broad knowledge of market dominance of 
commercial activities. This is generally not part of the regulatory body’s scope (Civil 
Aviation Authority, 2000). 

Overall there is no clear recommendation for single-till or dual-till regulation from an 
economical perspective. This is also illustrated by the fact that single-till regulation may 
be attractive to the airlines but not to the airport operators (Graham, 2009). For this 
reason Czerny (2006) developed an analytical framework for airport regulation to 
evaluate the effects of single-till and dual-till regulation on welfare. He showed that 
single-till regulation will always perform better, although it cannot reach the optimum 
welfare level of Ramsey charges. By extending the analytical framework, Yang and 
Zhang (2011) could also determine a welfare dominance of dual-till instruments in 
situations of significant airport congestion. 
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However, due to the existence of local competitors in the spatial proximity of a 
station the spill-over of market power will probably be weaker at stations than in the case 
of airports. Therefore, the results of Czerny (2006) and Yang and Zhang (2011) cannot be 
directly adapted to the regulation of stations. This paper tries to fill this gap by 
considering a local competitor for commercial services outside of the station. 

In the following, Section 2 describes the basic model and develops the framework for 
determining welfare effects under the different regulatory regimes. Section 3 shows the 
reference scenario in case of the absence of regulation. Sections 4 and 5 analyse the 
welfare effects of single-till and dual-till regulation, Section 6 finally compares the 
different regulation schemes. Section 7 concludes. 

2 The model 

We create an asymmetric environment with two firms S and O competing for commercial 
services, with S being an integrated station manager for traffic and commercial services. 
O offers its commercial services outside of the station with dO representing the spatial 
distance between commercial services of O and traffic services of S. 

We assume non-congested capacities for both services, zero variable costs and the 
existence of positive fixed costs Fi with i = S, O, which enable positive profits πi. The 
overall potential demand for traffic services is normalised to 1. The quantity of potential 
consumers for commercial services consists entirely on the share of population, which 
already consumed traffic services (passengers). Each individual can consume a 
maximum of one unit of both services. 

Passengers decide for commercial services C on the basis of their individual 
consumer surplus for commercial services, which are given by: 

( ), ,1C i i C C ir d pθ= − ⋅ −  

with dS = 0, dO ε (0, 1] and pC,i ≥ 0 denoting i’s charge for commercial services. The 
willingness to pay for commercial services θC is independent and uniformly distributed 
on the unit interval [0, 1]. Moreover, since commercial services become worse substitutes 
for greater distances, the overall willingness to pay (1 – dO) ⋅ θC decreases with dO. 

The location of the marginal consumer, who is indifferent between buying from S or 

O can be found at , ,ˆ .C S C O
C

O

p p
d

θ
−

=  For guaranteeing a positive demand at both 

enterprises we additionally assume the existence of ˆ (0,1)Cθ ε  and ,
ˆ( ) 0C i Cr θ >  from 

which we obtain ,
, ,1

C O
C S O C O

O

p p d p
d

< < +
−

 as a necessary condition. Hence, the relative 

demands for commercial services of passengers take values of: 
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For determining the overall demand for commercial services of the entity of individuals 
we additionally need to identify the demand for traffic services. Therefore, similarly to 
commercial services, individuals decide for travelling T in case of positive rents: 

, , ,T S T T S T T Sr p pθ θ≥ − ⇔ ≥  

with traffic charges pT,S ≥ 0 and the willingness to pay for traffic services θT being 
independent and uniformly distributed on the unit interval [0,1] as well. On the 
assumption that commercial charges pC,i cannot be observed before travelling, individuals 
will only decide for travelling on the basis of rT,S as overall consumer surpluses rC,i + rT,S 
are still unknown.2 

From this we obtain a share of individuals consuming traffic services of xT = 1 – pT,S. 
Thus, the overall demand for commercial services follows from xC,i = xT ⋅ XC,i and (1) as: 

( )

( )

, ,
, ,

, , ,
, ,

1 1

1 ,
1

C S C O
C S T S

O

C S C O C O
C O T S

O O

p px p
d

p p p
x p

d d

−⎡ ⎤= − ⋅ −⎢ ⎥⎣ ⎦
−⎡ ⎤= − ⋅ −⎢ ⎥−⎣ ⎦

 (2) 

which is graphically illustrated in Figure 1. 

Figure 1 Demand for traffic and commercial services 

 

Due to πS = πT,S + πC,S = xT ⋅ pT,S + xC,S ⋅ pC,S – FS and πO = xC,O ⋅ pC,O – FO profits are 
finally given by their profit functions: 

( ) ( ) , ,
, , , ,1 1 1 C S C O

S T S T S T S C S S
O

p pp p p p F
d

π
−⎡ ⎤= − ⋅ + − ⋅ − ⋅ −⎢ ⎥⎣ ⎦

 (3) 
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( ) , , ,
, ,1 .

1
C S C O C O

O T S C O O
O O

p p pp p F
d d

π
−⎡ ⎤= − − ⋅ −⎢ ⎥−⎣ ⎦

 (4) 

For comparing the impact on welfare for different regulatory instruments we additionally 
need to identify consumer surpluses from traffic and commercial services. As travelling 
is a necessary condition for gaining surpluses from consuming, the overall consumer 
surpluses arise from: 

a travelling and consuming for individuals with θT ≥ pT and ,

1
C O

C
O

p
d

θ ≥
−

 

b solely travelling for individuals with θT ≥ pT and , .
1

C O
C

O

p
d

θ <
−

 

Hence, consumer surpluses are represented by: 
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∫ ∫ ∫ ∫

∫ ∫ ∫ ∫  (5) 

The overall welfare W consists entirely of the sum of (3), (4) and (5). 
In the following, we will analyse the profit-maximising strategies of S and O in a 

multistage game: given a potential regulatory constraint the station manager will initially 
set traffic charges pT,S, whereupon outside firm O fixes its distance dO. Finally, both firms 
compete for commercial services with pC,S and pC,O in a Bertrand competition. 

3 Unregulated scenario 

In the absence of regulation the integrated station manager S maximises the profits 
without any constraints. Starting in the last stage both firms S and O compete in 
commercial charges given the spatial distance dO and traffic charges pT,S. From the first 
order conditions of (3) and (4) with respect to pC,S and pC,O we obtain the optimal 
reactions, which lead to a price setting in equilibrium of: 

( )
, ,

2 1, .
3 3

O O O
C S C O

O O

d d dp p
d d

⋅ −
= =

+ +
 (6) 

In the second stage outside firm O optimises its profits with respect to dO, as an 
increasing distance effects both a decreasing level of the willingness to pay and a higher 
degree of differentiation of commercial services, which in turn implies increased prices 
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pC,S and pC,O in Bertrand competition. Together with (6) the first order condition of profit 
function (4) with respect to dO leads to optimal solutions for distance and commercial 
charges, i.e., 

, ,
3 1 1, , .
7 4 14O C S C Od p p= = =  (7) 

Given these solutions and the first order condition of (3) with respect to pT,S, the station 
manager will adjust profit maximising traffic charges to a level of: 

,
41 ,
96T Sp =  (8) 

which implies profits of 3,025 .
9,216S SFπ = −  Thus, non-negative profits πS can only be 

guaranteed, if the level of fixed costs FS is limited to an upper boundary of 
3,025 0.32823350694.
9,216SF = ≈  

Based on profit functions (3), (4) and consumer surpluses (5) optimal prices and 
distance from (7) and (8) induce finally a welfare level of: 

38,005 1.03095160
36,864 S O S OW F F F F= − − ≈ − −  (9) 

for .S SF F≤  

4 Single-till regulation 

In case of a single-till regulation traffic charges have to account for  
profits from commercial services. At this, regulated traffic charges on the  
basis of average costs do not have to cover the overall share of fixed costs3 for  
traffic services αT ⋅ FS, as these costs are getting reduced by positive profits  
from commercial activities πC,S. Consequently, regulated traffic charges have to  
fulfil 

,

, , ,[ ( )] / ,
C S

T S T S C S C S C S Tp F p x F x
π

α α
=

≤ ⋅ − ⋅ − ⋅  which leads to a restriction of: 

( ) , ,
, ,

,
: 0

1
S C S C S

T S T S
T S

F p xg p p
p

− ⋅
= − ≥

−
 (10) 

with xC,S from expression (2). 
As (10) only affects price setting in the first stage, strategic behaviour in second and 

third stages do not differ from the reference case. Hence, solutions for commercial prices 
pC,S, pC,O and distance dO can be adopted from (7), which leads together with (3) and (10) 
to a profit of: 

( ), ,
71
48S T S T S Sp p Fπ ⎛ ⎞= − ⋅ + −⎜ ⎟

⎝ ⎠
 (11) 
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and a regulatory constraint of: 

( ), ,
,

7 0.
1 48

S
T S T S

T S

Fg p p
p

= − − ≥
−

 (12) 

Maximising (11) subject to (12) shows that both non-negative profits and the regulatory 
constraint (10) can only be fulfilled for 0 S SF F< ≤  with SF  being the upper boundary 
from the unregulated case. 

Since πS is curved oppositely to g(pT,S) and both functions intersect twice at  
πS = g(pT,S) = 0, the restriction of non-negative profits and g(pT,S) ≥ 0 only holds in the 
intersection points.4 This determines the two optimal traffic charges: 

,
3,025 9,216 41

96
S

T S
Fp − +

=  (13) 

,
3,025 9, 216 41,

96
S

T S
Fp − − +

=  (14) 

which are defined for .S SF F≤  
Additionally, for guaranteeing non-negative traffic charges pricing scheme (14) has to 

be restricted to 7 .
48SF ≥  Hence, for 70

48SF< ≤  the station manager adopts (13) and for 

7
48 S SF F≤ ≤  any charge of (13) or (14) as both prices lead to zero profits of πS. 

Together with profit maximising charges for commercial services and distance from 
(7), profit functions (3), (4) and consumer surpluses from (5) the optimal traffic charges 
determine a welfare level of: 

19,855 361 3,025 9, 216 18,432
36,864

S S
O

F FW F− − +
= −  (15) 

for (13) with S SF F≤  and 

19,855 361 3,025 9,216 18, 432
36,864

S S
O

F FW F+ − +
= −  (16) 

for (14) with 7 .
48 S SF F≤ ≤  

5 Dual-till regulation 

In case of a dual-till regulation traffic charges will only be limited with respect to the 
direct fixed costs of traffic services. Therefore, in contrast to a single-till approach, the 
overall share of fixed costs αT ⋅ FS will not be reduced by any positive profits from other 
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businesses. Considering such a regulatory design, welfare optimisation follows an 

average cost pricing strategy with , ,T S
T S

T

Fp
x

α ⋅
≤  implying the restriction: 

( ), ,
,

: 0.
1

T S
T S T S

T S

Fh p p
p

α ⋅
= − ≥

−
 (17) 

As in the single-till case, commercial charges pC,S, pC,O and distance dO will be set 
independently from pT,S in second and third stages as well. Consequently, we can take 
solutions in equilibrium again from expression (7), which determine the same profits of: 

( ), ,
71 .
48S T S T S Sp p Fπ ⎛ ⎞= − ⋅ + −⎜ ⎟

⎝ ⎠
 (18) 

Maximising (18) with respect to (17) shows, that optimal traffic charges depend on both 
the relative share αT and the level of fixed costs FS. As a result of the existence of these 
two parameters we need to identify all feasible combinations of αT and FS, from which 
we yield different cases of profit maximising pricing strategies. 

Proposition 1: In case of a dual-till regulation the station manager levies profit 
maximising charges: 

A ,
1 1
2 4T S T Sp Fα= − ⋅  for 

1 70
48SF< ≤  and 0 1Tα≤ ≤  

2 7 2,255
48 9, 216SF< <  and ( ) 1S Tv F α≤ ≤  

3 2, 255
9,216 S SF F≤ ≤  and 2, 255( )

9,216S T
S

v F
F

α≤ <  

with 385 7 3,025 9,216( ) 1
4,608

S
S

S

Fv F
F

+ −
= −  

B ,
41
96T Sp =  for 2, 255

9,216 S SF F≤ ≤  and 2,255 1
9, 216 T

SF
α≤ ≤  

The proof is given in the Appendix. 
This pricing scheme shows the necessity of a lower boundary v(FS) for αT whenever 

7
48SF ≥  is given. Even though 2,255

9, 216 SF
 presents as an upper boundary for αT in case 

(3) this critical value of αT only determines either to apply for pricing strategy A or B. 
Given the relevant traffic charges from Proposition 1, we yield from (18) the station 

manager’s profits πS(αT, FS) for all feasible combinations of αT and FS. Together with 
prices and distance from (7), the outside competitor’s profits from (4) and consumer 
surpluses from (5) we finally obtain the overall welfare level subject to αT and FS, i.e., 
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( ), .T S OW F Fζ α= −  (19) 

6 Welfare comparison 

Based on the theoretical framework we were able to determine welfare solutions for all 
kinds of regulatory schemes. Before comparing specifically the implications of single-till, 
dual-till and the absence of regulation on welfare, it is useful to reformulate (9), (15), (16) 
and (19) as W + FO, as all results will only be shifted upwards by the same amount of the 
exogenously given level of fixed costs FO. 

Since the impact of dual-till regulation on welfare is not sufficiently defined by FS, 
we are obliged to estimate W + FO for all feasible values of αT. Therefore, we will focus 
on the results for three different values of αT with αmin = max{v(FS), 0}, αmax = 1 – as 
lower and upper boundaries – and α50% = 0.5 ⋅ αmin + 0.5 ⋅ αmax. The results are shown in 
Figure 2. 

Figure 2 Comparison of welfare levels 

 

It is getting obvious that both single-till and dual-till regulation do not strictly dominate 
for all values of FS. Nonetheless a single-till implementation following (15) will never 
perform better than any other strategy. Hence, we have to focus on specific ranges of FS 

for determining the best regulatory strategy. For 7
48SF <  dual-till regulation represents 

the welfare-maximising instrument for all 0 ≤ αT ≤ 1, since single-till regulation (16) 
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cannot be adopted. In case of 7
48SF ≥  and αT = αmin both single-till (16) and dual-till 

regulation induce the same welfare implications, i.e., min- (16) - ( ) .Single till Dual tillW W α=  
However, for all αT > αmin dual-till regulation is still dominating up to a critical value 

7 .
48SF >  This boundary is given by the lowest value of FS which implies  

- ( ) - (16)TDual till Single tillW Wα =  and can be found for αT = αmax, i.e., 

max- ( ) - (16) 0.16361.Dual till Single till SW W Fα = ⇔ ≈  

Proposition 2: For FS ≤ 0.16361 single-till regulation will never perform better than  
dual-till regulation. 

Considering smaller values of αT with αmin < αT < αmax dual-till instruments can even 
dominate for greater values of FS. Nonetheless, there exists an upper boundary of FS from 
which on dual-till regulation will never imply a higher welfare level. This critical value 
of FS results from the intersection point of WSingle-till(16) and the right-sided limit of 

- ( ) ,TDual tillW α  i.e., min - ( ) - (16)lim 0.230034.TT Dual till Single till SW W Fαα α↓ = ⇔ ≈  

Proposition 3: For FS ≥ 0.230034 dual-till regulation will never induce a higher welfare 
level than single-till regulation (16). 

In the range of 0.16361 < FS < 0.230034 a general recommendation cannot be given, 
since results depend on αT. However, for any composed αC = t ⋅ αmin + (1 – t) ⋅ αmax with 
0 ≤ t < 1 we can always find a critical value *

SF  from which on single-till regulation (16) 
will never be dominated by dual-till regulation. Hence, from - ( ) - (16)CDual till Single tillW Wα =  

this critical value is given by *
2

227,172 (11,088 15,523)( )
1,327,104 (42 403)S

tF t
t

⋅ ⋅ +
=

⋅ +
 with 

*
0.SF

t
∂

>
∂

 It has 

to be noticed that *
SF  is only an implicit function of t since the critical value depends on 

αC with αC = αC(t), i.e., * *( ( ))S S CF F tα=  and 
* *

.S S C

C

F F
t t

α
α

∂ ∂ ∂
= ⋅

∂ ∂ ∂
 Together with 

*
0SF

t
∂

>
∂

 

and 0C

t
α∂

<
∂

 we finally obtain 
*

0.S

C

F
α
∂

<
∂

 

Proposition 4: For 0.16361 < FS < 0.230034 lower values of αT ε (αmin, αmax] induce the 
dominance of dual-till instruments up to a greater level of FS and vice versa. In case of  
αT = αmin no strategy will ever perform better. 

7 Concluding remarks 

The analysis focused on the welfare implications of single-till and dual-till price-cap 
regulation of railway stations. The regulatory body should adopt dual-till instruments for 
a lower level of stations’ fixed costs and take profits from commercial services into 
account whenever fixed costs are high. 
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This recommendation results from the different reactions on charges for single-till, 
dual-till and the absence of regulation. In case of a dual-till regulation an average cost 
charging requires the identity of revenues and the fixed costs from traffic services, which 
determine a unique traffic charge. In contrast, in a single-till scenario the level of fixed 
costs of traffic services will be reduced by the amount of positive profits from 
commercial activities.5 Hence, the station manager has to set traffic charges in order to 
adjust revenues from traffic services and the difference between fixed costs of traffic 
services and profits from commercial activities. This requires – compared to the dual-till 
scheme – a reduction of revenues from traffic services. For this, both high and low traffic 
charges price-quantity combinations can be found, that induce lower levels of revenues 
from traffic services and meet the requirements of a single-till regulation. The station 
manager’s profits are zero in both cases. However, the impact on welfare differs strongly 
between these solutions, since high (low) traffic charges induce a low (high) demand for 
traffic services. This in turn implies both a low (high) level of consumer surpluses for 
traffic services and a small (large) quantity of potential consumers for commercial 
services. Hence, the level of consumer surpluses for commercial services and 
consequently the overall welfare level will be low (high), too. As unregulated traffic 
charges are always within the range of these two solutions, single-till regulation can 
cause either negative or positive implications on welfare compared to no regulation. 

But the welfare enhancing single-till strategy with low charges, will only dominate 
for higher levels of fixed costs. Low fixed costs imply low levels of traffic charges under 
all regulatory regimes. Thus, traffic charges will not differ strongly between single-till 
and dual-till regulation by absolute numbers. Under these conditions the demand for 
traffic services and the level of consumer surpluses are high and will only reduce slightly 
in a dual-till scenario. However, a small increase of traffic charges in absolute numbers 
will cause a strong positive price effect, whereas negative quantity effects will be weak. 
This means slightly higher traffic charges in the dual-till case will imply significantly 
higher profits from traffic services. This in turn will overcompensate losses from 
consumer surpluses and overall lead to a higher level of welfare. 

At higher fixed costs, however, the situation reverses. In the dual-till scenario the 
resulting increased losses of consumer surpluses will lead to a critical upper boundary of 
fixed costs, where profits from traffic services cannot (over-)compensate these losses 
anymore. Therefore, dual-till instruments only dominate for lower levels of fixed costs. 

However, these results only hold in the case of a price-cap regulation, where the 
station manager can be committed to a given level of traffic charges. Provided that the 
regulatory body only approves traffic charges concerning the compliance with the 
requirements of single-till or dual-till regulation, our recommendations for a single-till 
pricing in the case of high fixed costs have to be modified since without a price-cap the 
station manager could also apply high, welfare decreasing single-till charges. Profits are 
zero in any single-till scenario and positive profits can only be realised under a dual-till 
regime. Thus, the station manager can credibly threaten with a single-till pricing at a high 
level of traffic charges, where welfare will even fall behind the situation of no regulation. 
In order to prevent a reduction of welfare the regulatory body will be obliged to adopt a 
dual-till regulation as a second-best solution. Hence, without a price-cap a dual-till 
regulation will always perform better. 

Finally, it can be stated that this analysis gave conclusions for further policy issues on 
the regulation of railway stations. It could be shown that neither single-till nor dual-till 
regulation will always dominate for all types of railway stations, since welfare 
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implications differ strongly with the particular fixed cost structure of stations. Moreover, 
an effective regulation of traffic services requires the existence of price-caps which give 
the regulatory body sufficient power to enforce the welfare optimal single-till or dual-till 
charges. 

For future research it would be interesting to investigate the impact on congested 
capacities of railway stations on the decision for single-till or dual-till regulation and to 
adapt this framework to other types of service facilities like ports or freight terminals. 
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Notes 
1 See also Directive 2001/14/EC Article 7. 
2 It seems realistic to assume that the cost of information determining pC,i will exceed the 

willingness to pay for commercial services before arriving at S. Otherwise, a decision on the 
basis of rC,i + rT,S incorporates the highly theoretical scenario of travelling despite negative 
surpluses for traffic services, which always occurred if such losses could be  
(over-)compensated by positive surpluses for commercial services. 

3 The station manager’s fixed costs can be decomposed into FS = αT ⋅ FS + αC ⋅ FS with  
αT + αC = 1. 
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4 For FS = SF  both functions only touch once at the abscissa axis. 

5 Although commercial prices and spatial distance do not depend on the value of traffic charges, 
demand [equation (2)] and profits from commercial activities are variable with respect to 
traffic charges. 

Appendix 

Proof of Proposition 1: Profit function (18) is concave and has a maximum point at  

,
41.
96T Sp =  Moreover, non-negative values of πS require 3,025 .

9,216S SF F≤ =  Hence, the 

optimisation problem is given by πS → maxpT,S s.t. h(pT,S) ≥ 0 ∧ πS ≥ 0 for 0 ≤ αT ≤ 1 and 
0 .S SF F< ≤  

1 αT = 0: With pT,S ≥ 0 restriction h(pT,S) ≥ 0 can only be fulfilled for pT,S = 0, which 

implies a profit of (0) .
48S SFπ 7

= −  Consequently, *
, 0T Sp =  always leads to a  

(non-negative) profit maximum for αT = 0 and 7 .
48SF ≤  

2 αT > 0: h(pT,S) is a convex function with a minimum point at , 1 : ,T S T Sp Fα ϕ= − =  

where 41
96

ϕ ≥  holds for all feasible αT, FS. 

2.1 1 :
4T SFα ≥  As we yield h(pT,S) ≥ 0 ∀ pT,S we can generate profits at the 

maximum point of πS, i.e., *
,

41.
96T Sp =  

2.2 1 :
4T SFα <  h(pT,S) can take both negative and positive values, with a minimum 

point at 41
96

ϕ >  and h(ϕ) < 0. In the following we will determine optimal 

prices *
,T Sp  separately for pT,S ≤ ϕ and pT,S > ϕ and combine the solutions 

afterwards. 
2.2.1 pT,S ≤ ϕ: In this situation we focus solely on prices, which imply a  

non-positive slope of h(pT,S), i.e., 
,

0.
T S

h
p
∂

≤
∂

 Hence, there exists one 

price ,T Sp  which fulfils , ,
1 1( ) 0 .
2 4T S T S T Sh p p Fα= ⇔ = − −  Based 

on the value of ,T Sp  we will identify the optimal price setting in two 
subcases. 
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2.2.1.1 ,
41 :
96 T Sp ϕ≤ ≤  As h(pT,S) has a negative slope and intersects 

the abscissa axis at ,T Sp  the restriction h(pT,S) ≥ 0 holds for all 

, , .T S T Sp p≤  With ,
1

96T Sp 4
≥  it is obvious, that pricing at the 

maximum point of πS with *
,

41
96T Sp =  fulfils this restriction as 

well, i.e., 41 0.
96

h⎛ ⎞ ≥⎜ ⎟
⎝ ⎠

 

However, case 2.2.1.1 only occurs for 

,
1 1 41 ,
2 4 96T S T Sp Fα= − − ≥  which implies the existence of 

2,255 .
9, 216T SFα ≤  

2.2.1.2 ,
410 :
96T Sp≤ <  In contrast to the previous situation this case 

requires the existence of 

,
1 1 41 2,255 .
2 4 96 9, 216T S T S T Sp F Fα α= − − < ⇔ <  At this, πS(pT,S) 

is an increasing function in pT,S, hence an optimal pricing 
strategy seeks the highest possible value of pT,S, which 

satisfies the necessary restraint. Due to 
,

0
T S

h
p
∂

<
∂

 the profit 

maximum can be found at *
,( ) 0,T Sh p =  which implies 

*
, ,

1 1 .
2 4T S T S T Sp p Fα= = − −  

Even though, non-negative profits only exist for a restricted 

range of αT, since *
,

1 1 0
2 4S T S T Sp Fπ α

⎛ ⎞
= − − ≥⎜ ⎟⎜ ⎟

⎝ ⎠
 s.t. 

2, 255
9,216T SFα <  requires 

385 7 3,025 9, 2161 : ( ).
4,608

S
T S

S

F v F
F

α
+ −

≥ − =  
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2.2.2 pT,S > ϕ: On the right-hand side of the minimum point ϕ the restraint 
h(pT,S) has a positive slope, whereas profits πS decrease in pT,S, i.e., 

,
0.S

T Sp
π∂

<
∂

 Hence – in contrast to 2.2.1.2 – an optimal pricing strategy 

seeks the lowest possible value of pT,S, which satisfies the necessary 
restraint. Consequently, a profit maximising traffic charge *

,T Sp  implies 
the existence of *

,( ) 0T Sh p = for *
, ,T Sp ϕ>  which leads to 

*
,

1 1 .
2 4T S T Sp Fα= + −  

However, the comparison of 2.2.1 and 2.2.2 shows, that profits will 
always dominate in case of pT,S ≤ ϕ, as we yield π2.2.1.1 > π2.2.1.2 > π2.2.2 

* * *
, , ,

41 1 1 1 1 .
96 2 4 2 4T S T S T S T S T Sp p F p Fπ π α π α

⎛ ⎞ ⎛ ⎞⎛ ⎞⇔ = > = − − > = + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
Hence, we can exclude the situation of *

, .T Sp ϕ>  

The analysis gave solutions for cases 1, 2.1, 2.2.1.1 and 2.2.1.2. At this, 
cases 2.1 and 2.2.1.1 imply pricing at the maximum point of πS with 

*
,

41.
96T Sp =  Hence, we can combine both situations, given 

2,255 2,255
9,216 9,216T S T

S
F

F
α α≥ ⇔ ≥  and αT ≤ 1, i.e., 2, 255 1.

9, 216 T
SF

α≤ ≤  

In turn, this restriction requires the existence of 
2,255 2, 2551 ,

9, 216 9,216S
S

F
F

≤ ⇔ ≥  which leads together with S SF F≤  to 

2,255 .
9, 216 S SF F≤ ≤  Therefore, *

,
41
96T Sp =  will only be adopted for 

2, 255
9,216 S SF F≤ ≤  and 2, 255 1,

9, 216 T
SF

α≤ ≤  which corresponds to 

scenario B of Proposition 1. 
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From case 2.2.1.2 we obtained *
,

1 1
2 4T S T Sp Fα= − −  as an optimal 

pricing scheme for 2, 255
9,216T SFα <  and ( ),T Sv Fα ≥  i.e., 

2,255( ) .
9,216S T

S
v F

F
α≤ <  Under the assumption of αT > 0 a lower 

boundary of v(FS) is only necessary in case of v(FS) > 0, which implies 
7 .
48SF >  Furthermore, the upper boundary only becomes relevant for 

2,255 2, 2551 .
9, 216 9,216S

S
F

F
≤ ⇔ ≥  Hence, for 70

48SF< ≤  charging 

*
,

1 1
2 4T S T Sp Fα= − −  shows optimal for all feasible levels of  

αT ε (0, 1], whereas αT may only take values of v(FS) ≤ αT ≤ 1 for 
7 2,255
48 9, 216SF< <  [Proposition 1, scenario A (2)] and 

2,255( )
9, 216S T

S
v F

F
α≤ <  for 2, 255

9,216 S SF F≤ ≤  [Proposition 1, scenario 

A (3)]. 

Since *
,

1 1
2 4T S T Sp Fα= − −  results in *

, 0T Sp =  for αT = 0, case 1 can 

finally be combined with case 2.2.1.2, which implies an optimal pricing 

scheme *
,

1 1
2 4T S T Sp Fα= − −  for 70

48SF< ≤  and 0 ≤ αT ≤ 1 

[Proposition 1, scenario A (1)]. □ 


