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Abstract: Drought impacts economy, ecology, society, and agriculture. 
Depending on investigating the normalised difference vegetation index 
(NDVI), the vegetation condition index (VCI) is used to monitor drought due to 
its dependability and efficiency in studying climatic and environmental events. 
Dryness in Barry, Wales, UK and its impacts on vegetation are monitored using 
remote sensing and geographic information systems. Aerial time series data of 
Landsat images for 1974, 1984, 1994, 2004, 2014, and 2023 from the 
multispectral scanner (MSS), thematic mapper (TM), enhanced thematic 
mapper plus (ETM+), and operational land imager (OLI) are inspected.  
VCI-based drought was greatest in 1994, weaker in 1974, and expected in 
2023. According to VCI, average precipitation lowered drought intensity in 
1984, 2004, and 2014. 1994 lost the most vegetation comparing to 1974, 1984, 
2004, 2014, and 2023. These results show how the VCI helps identify drought 
patterns and how ecological variables interact with drought. 
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1 Introduction 

Water resources are suffering from excessive demand for daily human needs, and this 
increase in demand coincides with the significant increase in rates of global warming, 
which has had a negative impact on the generation of drought on the entire planet. If the 
drought problem that the world is suffering from recently is not put under the microscope 
by specialists with the aim of solving it, it will worsen and result in a global food 
shortage, and this in turn will affect the economic budgets of many countries in the world 
(Riebsame et al., 2019; Xu et al., 2021). The study conducted by Lesk et al. (2016) 
indicates that the problem of drought led to a decline and decrease in global agricultural 
production between 1964 and 2007 by more than 10%. Another study conducted by FAO 
(2018) also indicates an increase in the total costs of all natural resources resulting from 
environmental and climate disasters by more than 30% as a result of the drought 
phenomenon to which large areas of agricultural land were exposed to for the period 
between the years 2005 and 2015 on the surface of the Earth. This poses a serious threat 
to human efforts to preserve the global production of agricultural crops around the world. 

Rainfall, which declines for long periods of time as a result of extreme climate 
changes and global warming, is considered the most common factor in the deterioration 
of the agricultural sector and the generation of drought phenomena. Despite the efficient 
monitoring of climatic factors, the process of predicting rainfall by humans remains 
somewhat ambiguous (Lawal et al., 2021). The phenomenon of drought that affects the 
world economically and agriculturally differs from natural disasters that occur on Earth 
for the following reasons:  

1 The difficulty of determining the beginning and end of drought;  

2 The effects resulting from drought accumulate and become more severe and can 
continue for years after the environmental event occurs;  

3 The geographical areas that suffer from the problem of drought are wide and 
sometimes unclear because drought appears over them over time compared to the 
areas that can be identified resulting from natural disasters.  

As a consequence of this, it is not a straightforward comparison to compare the intricate 
nature of studying the effects of drought with the complexity of responding with 
emergency measures to other natural catastrophes. Consequently, it is of the utmost 
importance that research concentrates on identifying, preventing, regulating, and 
controlling the risks that are linked with the situation, taking into consideration the 
particular characteristics of the region and the industries that are most at risk. 
Additionally, the development of ways to address these risks is crucial (Van Quang et al., 
2021). Research conducted by Zhang and Jia (2013) indicates that drought is the natural 
disaster that causes the greatest financial loss to ecosystems, agricultural systems, and 
municipal water delivery systems. As a direct consequence of this, a great deal of 
technology has been developed to monitor droughts. According to Ji and Peters’s (2003) 
research, drought indexes are simplified assessments of drought severity that incorporate 
massive amounts of data on water availability and demand. In order to perform this 
function, a number of different drought indices were established. A good many of these 
indicators, which may include things like average temperatures and levels of 
precipitation, are derived from data that is gathered by weather stations. Standardised 
precipitation index (SPI) was developed by McKee et al. (1993). In 1965, the scientist 
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Palmer invented the Moisture Anomaly Index (Z-index) and the Palmer drought severity 
index (PDSI) with the intention of exploring the phenomena of water retreating from the 
soil and the creation of drought. Both of these indices were designed with the goal of 
determining the severity of drought. Indicators like these are differentiated by their 
capacity to identify regions that are vulnerable to drought when such regions are located 
in close proximity to one another. As for the weather stations, unfortunately, they fail to 
give a comprehensive definition of the drought situation and drought area, as well as 
monitoring area for regions located far away from the weather monitoring stations. On 
the other hand, for regions with relatively the least number of weather stations or a large 
difference in regional geography and climate, such stations cannot be applied (Zhang and 
Jia, 2013). 

Appropriate and effective monitoring of drought-prone regions requires resort to the 
most recent technological innovations that are developed to keep pace with the 
environmental and climate sciences. Satellite pictures are utilised as the most important 
technology, as they provide a wide range of geographical, weather, environmental, sub-
surface information. The inputs from the weather stations about the climatic parameters 
are, in fact, observed with a high extent of spatial and temporal variations and are the 
major factors for prediction of future events (Sandeep, et al., 2021). Remote sensing 
technology is widely used for assessing environmental and climate changes, and it has 
been an important and effective means. Remote sensing technology systematically 
collects and provides data and information, which can be used for a more systematic and 
all-round monitoring of the earth’s surface, such as drought and other environmental 
changes. It has proved its effectiveness as a tool of monitoring drought in those areas 
which lack weather stations in the ground (Rhee et al., 2010; Wu et al., 2013). Remote 
sensing provides more accurate information to researchers by analysing some climate 
variables, such as soil moisture and vegetation cover. The method can measure some 
indexes, and obtain the severity, duration, and global impact of drought by some 
indicators (Kogan, 1995; Kuri et al., 2014; Shen et al., 2014). The vegetation condition 
index (VCI) is a simple indicator of damage which derived from the normalised 
difference vegetation index (NDVI) (Kogan, 1995). The calculation process is easy and 
clear and has been introduced by Quiring and Papakryiakou (2003). The Vegetation 
Condition Index identified as one of drought indices. The VCI has been made specific to 
the detection and monitoring of that drought. The VCI is by and large considered the best 
or the better targets of drought. The detection of a drought, indicate the level of ground 
vegetation coverage and reflect the spatial distribution are all accomplished with a high 
level of accuracy with the Vegetation Condition Index. Additionally, changes in NDVI 
can reflect areas more accurately than various ground-based climate observation stations. 
VCI derived from the NDVI index provides digital information that can be used to 
monitor drought conditions in different parts of the world. For example, remote sensing 
of short-term vegetation indices can provide nearly real-time indicators of the impacts of 
seasonal drought on agriculture for the main crop-growing seasons in South America, 
Africa, Asia, North America, and Europe (Kogan, 1997). The VCI obtained from the 
Kazakhstan area (Gitelson et al., 1998) enables us to judge the influence of climate 
conditions on vegetation conditions. This includes the comparison of such considerations 
when using vegetation area, biomass, and surface reflection from field measurement 
station data. The relationship shows that the green biomass is closely related to 
environmental conditions. The change of environmental conditions will lead to changes 
in vegetation. According to the relationship between environmental conditions and green 
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biomass, the change rules of vegetation under environmental conditions can be analysed 
and reflected, and that this quantitative relationship has been widely used in the field of 
vegetation for many years (Kogan, 1995; Wang et al., 2010; Wu et al., 2013; Yoshida et 
al., 2015; Wang et al., 2016; Han et al., 2021). The environmental plant indicators can 
capture and evaluate plant water stress, thereby providing information on the plant’s state 
and the extent of drought in the local area. There are numerous studies that have looked 
into different plant indicators to study the state of plants. These investigations have 
utilised remote sensing of different time series patterns and different sensors to describe 
the state of the region. In Shen et al. (2019) terms, the drought is among the most 
affecting natural disasters for millions of people globally, and particularly so for the 
agricultural sector, as an uncertain and unpredictable climatic phenomenon with 
unknown future conditions. 

The purpose of this research is to identify, investigate, and describe agricultural 
drought in Barry City, Wales, UK, and its surrounding planning macroregions through 
the application of a rigorous approach of analysis to the aerial time series data of Landsat 
images downloaded from the multispectral scanner (MSS), Thematic Mapper (TM), 
enhanced thematic mapper plus (ETM+), and operational land imager (OLI). The VCI is 
a technique that will be used to achieve this goal. Its primary purpose is to reduce the 
impact of geographically distinct differences in vegetation areas and physiographical 
settings. Our goal is to undertake an in-depth study of the spatiotemporal distribution of 
VCI, classifying it into a variety of categories in order to evaluate the incidence of 
drought at different points in time for the years 1974, 1984, 1994, 2004, 2014, and 2023. 

2 Study area 

Barry, Wales is located roughly 14 km south-southwest of Cardiff on the northern coast 
of the Bristol Channel in the Vale of Glamorgan. It’s developed into a bustling beach 
destination with lots to do, from relaxing on one of its many beaches to visiting the 
recently revitalised Barry Island Pleasure Park. Barry, a little community, has joined 
forces with Cadoxton, Barry Island, and now Sully, all larger villages. Barry Docks, built 
in the 1880s, sparked the city’s explosive expansion that would see it become the world’s 
largest coal port by 1913. Barry has a marine climate, so expect chilly summers, mild 
winters, and frequent strong winds, just like the rest of the British Isles. There is more 
sunshine there than in other parts of Wales because of its southern and coastal location. 
About 5 km west of Barry’s downtown, at Cardiff Airport in Rhoose, is the closest 
official weather observation station (The History of Barry, 2023) for the area. The 
geologic time scale in this region spans from the Mississippian (lower Carboniferous) 
limestone to the Lower Lias of the Mesozoic. Despite the dearth of minerals, certain 
stretches of coast are rich in fossils (Morgan, 1960). 

A marine climate, also referred to as an oceanic climate, is the moderate climate 
typically found along the western coastlines in the higher mid-latitudes of continents. It 
has a narrow yearly temperature range and few temperature extremes because to its 
generally cold summers and pleasant winters (for its latitude). Both hemispheres feature 
oceanic climates, with the majority found between 45 and 63 degrees north and south. 
They can be seen in abundance in the far northwest of Europe, the far northwest of US, 
and New Zealand. Subtropical highland climates, and in particular cold subtropical 
highland climates, are another climate categorisation sometimes combined alongside 
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oceanic climates. These weather patterns predominate in the tropical and subtropical 
mountain ranges that are affected by monsoons. Subpolar oceanic climates and colder 
climate types can be found in close proximity to polar or tundra regions. Cloudy 
conditions, regular precipitation, low-hanging clouds, and the regular passage of weather 
fronts and storms are typical of oceanic climates. Infrequent daytime heating and the 
collision of warm and cool air masses mean that thunderstorms are uncommon in these 
latitudes. Thunderstorms are less common in the temperate lowlands because these air 
masses rarely interact; however, in the subtropical highlands, where they are impacted by 
the monsoon, they can be more prevalent. While snowfall does occur occasionally, rain is 
the more common kind of precipitation throughout the year in most oceanic climatic 
zones. Because of the extreme cold, snowfall is more regular and heavy in subpolar 
oceanic regions. Oceanic climates, in general, are characterised by mild temperatures and 
infrequent temperature extremes. In contrast to continental climates, which have a coldest 
month with a mean temperature below 0°C or –3°C, these climates have a mean 
temperature above 0°C or at least above –3°C. The hottest month in an oceanic 
environment has an average temperature of about 22 degrees Celsius (UK environment 
Averages, 2023) and is therefore warm but not oppressively so. Figure 1 provides a visual 
representation of the study area’s placement within UK, accompanied by the Digital 
Elevation Model (DEM) and a three-dimensional illustration displaying the natural 
terrain elevation. 

Figure 1 The DEM with a 3D sketches of Barry City, UK (see online version for colours) 
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3 Methodology 

A drought is a prolonged and sustained period of insufficient precipitation that causes 
water scarcity and has negative consequences for ecosystems, agricultural production, 
and human settlements. Droughts are widely acknowledged as major environmental 
stresses with varying degrees of intensity, duration, and geographic extent. The VCI is a 
statistic derived from remote sensing that is used to evaluate the health and vitality of 
plant cover of all types, including crops and wild vegetation. The reflections produced 
into the atmosphere from various activities can quantify the geographical properties and 
features of the Earth’s surface, including industrial, human, and agricultural processes. In 
this context, ‘plant health’ means the ability to measure it using the VCI. The data used to 
compile this index came from a variety of remote sensing platforms that satellites have 
collected. The effect of rainfall on vegetation can be numerically represented by the VCI, 
even in a relative sense. This quantifies the health of the vegetation and makes it easy to 
track how the vegetation is growing and determine how much stress humans might be 
putting on it, so its growth can be monitored, as can the effects potential stresses are 
having on it. The VCI can be used to assess the potential impact of drought on the 
vegetation. If the underground aquifers are overdrawn, the plants will have to work 
harder to get water. If they cannot get enough, they will not be able to grow, and then 
either die, or fall prey to other maladies. The VCI and NDVI indices suggest that plants 
may be under stress in this scenario. Before the drought causes irreparable harm to the 
plants, these can be utilised to track its impacts (Gaznayee et al., 2021). According to 
Wenzhe et al. (2016), the VCI might be utilised to determine dry skin as well as tension 
in plants prior to it triggers wilting or injury to the plants. Beyond, the VCI may assist 
farmers, land supervisors together with ecologists find the threat together with at some 
point devise or perform methods to minimise dry spell’s results. We can make use of the 
VCI index to anticipate exactly how dry spells would certainly influence plant outcome, 
which is among its primary usages. The VCI is a crucial device that can conserve lives in 
times of dry spell. Decreased worths for the VCI show much less water readily available 
for plant advancement plus survival (Adriano et al., 2023). 

VCI estimation entails carrying out a variety of formulas, however, an extensively 
made use of method is to contrast present plants problems about a standard or lasting 
mean. According to Kogan in 1995, the formula for VCI is: 

min

max min

100
NDVI NDVIVCI

NDVI NDVI
⎡ ⎤−

= ×⎢ ⎥−⎣ ⎦
 (1) 

VCI values around 100 suggest the presence of very bright and thriving vegetation, 
displaying a natural state so near to the ideal one. VCI values below 100 indicate 
suboptimal circumstances, potentially suggesting stress or a decline in plant health. When 
the VCI value falls below 0, the amount of stress rises. 

One of the most important and fundamental indicators in the field of environmental 
research and remote sensing is the NDVI. It opens the door to studying the amount, 
health, and existence of plant cover in different verdant settings. Agricultural, forestry, 
land use planning, and climate change studies are just a few of the numerous geological 
and geographical scientific applications of the NDVI. This is because it is really good at 
tracking changes in vegetation and determining how healthy it is. The NDVI metric is  
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based on satellite imagery that was taken in the visible and near-infrared (NIR) regions of 
the Earth’s electromagnetic spectrum. The NDVI may be calculated using red and near 
infrared (NIR) data from several subsurface images; its values range from –1 to 1. 
Vegetation is strong and growing when the NDVI is close to 1, which means there is 
adequate water for the plants to get water without stress. As a result, the red light 
reflections would be very weak and there would be a touch of chlorophyll reflections 
with a large proportion. Typically, NDVI of urban areas, bodies of water and small water 
bodies is near zero, that is, these areas are free from vegetation. If most of the TSS in still 
water emulates red and near-infrared light, then the NDVI may indeed be less than zero. 
The amount of the two bands being absorbed by water throughout a higher range, and all 
water absorbing the two bands, because of a too high reflection. In return, this would 
provide a very high NDVI. The same magnitude of red and near-infrared light (Liu et al., 
2018). 

The NDVI emphasises on environmental protection, as it defines the most concise 
formulas of ecosystem changes and biodiversity over time. In fact, NDVI is sensitive to 
the soil moisture changes, which is an excellent indicator for monitoring the extension of 
deserts, dry zones, and other arid regions. As is well-known, deserts and dry areas have 
low NDVI values. Therefore, when using the NDVI for investigation, it is also possible 
to monitor and analyse the drought status of the plants and ecosystems. Thanks to remote 
sensing technology, data from space satellites can be obtained accurately. In this method, 
we take advantage of the changes of spectral reflections under different wavelengths to 
scan a larger area on the surface of the Earth. NDVI readings are necessary for 
supervising the climatic and environmental changes over the world. Recently, 
governments and international organisations have been giving much attention to the data 
obtained from satellites. It helps in controlling specific and preemptive weather, 
ecosystem, and geographic variations. As it is declared by Gaznayee et al. (2019), there is 
a potential to prevent bad things from happening. It goes without saying that different 
remote sensors show different characteristics, depending on the satellite and the required 
precision level. However, one of the things to be measured is the NDVI. It always turns 
out to be crucial for the attention of scientists, politicians, and land managers to the 
world’s ecosystems. Being an essential tool, NDVI helps to make the right decisions 
about the use of water resources and the environment, no matter whether long-term or 
short-term decisions are needed. According to Rouse et al. (1974), the following is the 
formula for NDVI: 

NIR REDNDVI
NIR RED

−=
+

 (2) 

These specific years have been selected based on historical information available about 
the area under study. It has been anticipated that rapid developments in fields like 
agricultural practices and significant shifts in climate patterns had ecological 
consequences that influenced the breakdown of rainfall into its constituent elements. 
Since the climatic effects of these major changes were not clearly discernible in terms of 
their impact on land and watersheds before 1974, we considered this year as our starting 
point or baseline. Subsequent 10-year intervals were chosen to better capture the extent to 
which alterations in the agriculture land cover within the study area had occurred due to 
both natural and human activities. It’s worth noting that changes in vegetation cover often  
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evolve slowly, even in the face of prompt actions. The characteristics of the Landsat 
images used in our analysis can be found in Table 1. Our selection of the optimal data 
collection times took into account factors such as image quality, scene availability and 
coverage (Path/row), and cloud cover (less than 1%). Consequently, we opted for images 
from years marking the transition between wet and dry seasons to best represent the 
vegetation maturity of the plant life under study. 

Table 1 Downloaded Landsat of Barry City 

Satellite Year Sensor 
Wavelength of used 
bands (nm) 

Spatial resolution 
(m) 

Cloud 
cover 

Landsat-3 1974 MSS B5 = 0.60–0.70 
B6 = 0.7–0.8 

30 0% 

Landsat-5 1984 
1994 
2004 

TM B3= 0.63–0.69 
B4 = 0.76–0.90 

30 0% 

Landsat-7 2014 ETM+ B4 = 0.63–0.69 
B5 = 0.77–0.90 

30 0% 

Landsat-8 2023 OLI B4 = 0.64–0.67 
B5 = 0.85–0.88 

30 0% 

The U.S. Drought Monitor (USDM) detects regions experiencing drought conditions and 
categorises them based on their severity. The USDM distinguishes between short-term 
and long-term drought. Short-term drought can affect agriculture and grasslands and can 
undergo rapid changes in its classification. In contrast, long-term drought has more 
profound effects on hydrology and ecology and can endure even when there are brief 
periods of increased precipitation. The map skeleton of drought employs a scale 
consisting of four drought categories, ranging from “Moderate Drought”, which 
represents the mildest form, to “Exceptional Drought”, signifying the most severe. 
Additionally, it draws attention to regions without drought and designates abnormally dry 
areas, potentially transitioning into or rebounding from drought. Table 2 demonstrates the 
drought skeleton considered by the U.S. Drought Monitor (USDM) (2023) and Kogan 
(1990). 

Table 2 VCI drought classification 

Drought category VCI (%) 
Normal or wet conditions ≥50 
Abnormally dry 41–50 
Moderate drought 31–40 
Severe drought 21–30 
Extreme drought 11–20 
Exceptional drought 0–10 
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4 Landsat imageries temporal processing 

Time-series data stands as the benchmark for examining shifts in the environment. 
Looking forward, the focus of future advancements will increasingly centre on the 
analysis of vast datasets through remote sensing systems. The approach of time-aware 
mapping surpasses conventional categorisation techniques in terms of effectiveness.  
The utilisation of imagery captured across multiple seasons has proven to enhance the 
accuracy of biomass assessments conducted in aquatic environments. Similarly, the 
application of multi-temporal data to estimate successional processes has yielded positive 
results. Studies and research that aim to monitor time series through the use of sensor 
maps preferably use spectral products obtained from a single sensor because their data 
show greater spatial and temporal consistency and are clearer compared to those images 
obtained from multiple sensor sources. The Landsat images resulting from satellite 
sensors are characterised by their exceptionally high spatial resolution, as has been 
observed by many scientists, in addition to the huge and comprehensive data repository 
they contain for extended and long periods of time (Tariq et al., 2021). Despite the above, 
remote sensing products for time series produced by satellite images need to intensify the 
accuracy of their data due to data gaps that affect their quality, as a pixel classification 
approach was used to monitor the frequencies of the image data reflected to the satellites 
by an effective and efficient way especially for time series image products.  
A comprehensive sequence of Landsat images can be used by collecting image products 
for a specific period of time and fitting them together at a single pixel scale to obtain 
accurate outputs (Somasundaram et al., 2020). 

Satellite images with clear, uninterrupted time series are distinguished by their ability 
and efficiency to produce accurate integrated images of the changing characteristics of 
agricultural land use for any location and across multiple time periods. Recently, the 
‘frequency per pixel’ approach has been relied upon as a way to determine large changes 
occurring on the Earth’s surface. This method has proven to be particularly effective 
when the sensed data is not stored in limited cloud-based systems. The hydrodynamic 
complexity that characterises most areas of the Earth’s surface due to fluctuating weather 
conditions requires that additional importance be given to pixel size and accuracy in 
order to obtain reliable temporal analyses, as determining the pixel frequency requires an 
extensive study of all theoretical and practical aspects to reach accurate determinations. 
The current study added another source about calculating pixel frequency by studying 
and classifying annual events and analysing them with the aim of observing their 
relationship to the drought phenomenon. Climate changes, which have become more 
complex and whose future events are not difficult to predict, greatly affect the ecosystem, 
and thus this effect extends to the surface vegetation, as plant ecosystems are linked to 
changes in the atmosphere, which makes them sensitive and greatly affected by climate 
changes that are witnessing complex and incomprehensible developments. Time series 
maps have become necessary, as they can be used to observe the seasonal effects that 
have occurred or are likely to occur in the future on land cover, especially for small plant 
areas. 

The time series of surface reflectance data from Landsat 3-8 images of the city of 
Barry in UK will be under study in the current research with the aim of deriving maps of 
the previous and current VCI, which will provide a future vision of vegetation cover and  
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thus develop solutions to potentially dangerous areas that may occur in the future. The 
study will also provide the relationship between extreme climate and vegetation cover by 
presenting an integrated set of satellite images and the data on climate changes they carry 
and how they affect vegetation cover. Time series data of Landsat were collected 
extending from 1974 to 2023 every 10 years. In order to prepare the photos for analysis, 
we utilise a procedure that effectively removes any disruptions caused by traffic and 
cloud interference by focusing on certain image bands. The bands mentioned include 
Landsat-3 MSS bands ‘B5’ and ‘B6’, Landsat-5 TM bands ‘B3’ and ‘B4’, Landsat-7 
ETM + and Landsat-8 OLI bands ‘B4’ and ‘B5’. These bands are specifically calibrated 
to capture wavelengths in the red and near-infrared range. The bands play a crucial part in 
the extraction process of vegetation cover as they serve as the basis for selecting sample 
sites. In order to create a spectral profile that accurately represents typical ground features 
in Barry City and assesses the quality of sample point selection, we employ the 
geographical information systems (GIS) to apply equation (2) to investigate the NDVI. 
This index calculates the average reflectance of diverse ground features within specified 
sample areas for each Landsat series. 

Figures 2–7 depict the results of the NDVI resulted from the analysis for Landsat’s 
imageries bands for the years 1974, 1984, 1994, 2004, 2014, and 2023. These images 
illustrate the similarity between the reflection spectra of ground features in the study area 
and those of typical ground objects, confirming the accuracy of our sample site selection 
process. 

Figure 2 NDVI of Barry City in Wales, UK for 1974 (see online version for colours) 
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Figure 3 NDVI of Barry City in Wales, UK for 1984 (see online version for colours) 

 

  

Figure 4 NDVI of Barry City in Wales, UK for 1994 (see online version for colours) 
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Figure 5 NDVI of Barry City in Wales, UK for 2004 (see online version for colours) 

 

  

Figure 6 NDVI of Barry City in Wales, UK for 2014 (see online version for colours) 
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Figure 7 NDVI of Barry City in Wales, UK for 2023 (see online version for colours) 

 

  

5 Results and analysis 

Additional analysis of the retrieved NDVI values from 1974 to 2023 is required to 
acquire the desired results from the vegetation analysis in order to determine the drought 
situation for the area under study. In this evaluation, we take an average, mean of the 
minimum and maximum NDVI values of these NDVIs of the period 1974–2023. The 
mean minimum and maximum NDVI are critical remote sensing and environmental 
monitoring metrics used to assess the health and vitality of vegetation within a given 
area. 

One of the most important benefits of NDVI usage is to know the “minimum, 
maximum and average” NDVI Values in any case of vegetation cover estimation for any 
area or time of the year, because this value expresses the nature of the vegetation cover 
and the magnitude of its fluctuation as a result of surrounding environmental and climate 
changes, knowing that the vegetation of any area under stress is inclined to shrink and 
disappear. We can utilise the NDVI metric in small and limited vegetated areas, and the 
outcome of this metric has a value and reliability especially as areas of risk decline in 
vegetation, as suggested by the average of the minimum and maximum NDVI values as 
the basic model of the field survey of the farmer of his farm to predict and stipulate the 
lowest values of vegetation integrity and drought pollution. The NDVI can be a standard 
measure to manage the agricultural sector with the ultimate goal of achieving full 
agricultural development, by the right and ideal distribution of the plant's resource. It 
helps in the correct management and guidance of applying the most ideal technique for 
success in execution of the agriculture. It is possible, using NDVI values, to monitor the 
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environment, investigating those locations exposed to drought and those regions most 
robustly and tenaciously resisting the environmental; places from which agricultural 
exploitation is possible and, furthermore, placing those areas categorised as resistant 
against drought in a relatively stable environmental context. Thus, NDVI values, at a 
minimum and maximum, can also be seen as a useful for assessing vegetation cover and 
its ability to exist in the face of critical, extreme and complicated environmental and 
climatic conditions and land regions can be categorised into a topographical regime in 
terms of NDVI. This classification can be used by land managers, environmental 
scientists, and researchers in providing a comprehensive vision of terrestrial vegetation, 
its complexities, and the challenges it is likely to face. Figure 8 displays the average 
minimum and maximum NDVI values for the Landsat image time series for the period 
1974–2023. These values were derived through the application of remote sensing 
technology and in conjunction with GIS software. 

Figure 8 The average minimum and maximum NDVI values for the period 1974–2023  
(see online version for colours) 

   

By utilising equation (1) to calculate VCI values spanning from 1974 to 2023 and 
categorising them according to Table 1, we require the minimum and maximum NDVI 
values, as deduced, along with the NDVI value for the specific year in question for 
deriving the VCI value. Consequently, we obtained the VCI results for the city of Barry, 
as depicted in Figure 9. 

The findings that were gathered and displayed in Figure 9 demonstrate that the year 
1994 was the most vulnerable to drought according to the VCI index, followed by the 
years 1974 and 2023. On the other hand, the amount of vegetation cover that was present 
during the research witnessed a considerable decrease in comparison to past years’ 
results. The severity of the drought was at its worst in 1994, making that year the driest 
one that was included in the study’s context. Nevertheless, during the dry years, 
conditions of extremely severe drought extended to cover the entirety region under study, 
with the bulk of the region experiencing drought conditions ranging from moderate to 
severe. Because of the influence of the climate, the region under investigation exhibited 
hardly any indicators of the adverse effects of drought in the years 1984, 2004, and 2014. 
The amount of land damaged by drought was quite small, and the region as a whole 
presented a beautiful green environment. This is an indication of good humidity levels, 
which minimised concerns linked to drought. In contrast to the prevalence of high values, 
the occurrence of VCI values below 10%, which indicate areas afflicted by drought, was 
essentially nonexistent. This suggests that the studied area was mostly undisturbed by 
extreme climate changes. 
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Figure 9 VCI values for Barry City in Wales, UK over the period from 1974 to 2023 (see online 
version for colours) 

 

The classification of VCI values for drought that can be found in Table 2 enables us to 
make the following observation: throughout the study years 1974, 1994, and 2023, there 
was a significant amount of spatial variability in the vegetation cover. This was the case 
despite the fact that Table 2 contains this information. The region consistently had the 
least amount of vegetation, and this was most noticeable in 1994 when a severe drought 
was present. It would appear that there is a strong connection between VCI and 
precipitation, as there are certain small regions that have not been damaged by the 
drought because they have received sufficient rainfall. In general, the area under 
consideration receives a substantial quantity of annual rainfall, which acts as a deterrent 
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against the onset of severe droughts. With the remarkable exception of 1994, it is clear 
that drought was not a significant problem during the years that were investigated. 
However, there is one year that stands out as an important exception: 1994. The 
underlying cause of this might be linked to a lack of water, which could be the 
consequence of insufficient rainfall or insufficient quantities to fully hydrate agricultural 
lands, both of which have contributed to an extreme degree of aridity in the region. In 
recent years and decades, the effects of global warming have been increasingly obvious, 
leading to climate events that are both unpredictable and frequently catastrophic. It may 
be difficult to handle some of these events since some of them can make drought 
conditions worse, while others can lead to unanticipated flooding. When compared to 
2014, when drought-affected areas were small, the year 2023 provided conclusive 
evidence of the influence of global warming due to the fact that the research area suffered 
a higher degree of drought than in 2014. It is not out of the question that this problem 
could become much more severe in the future as a result of rising temperatures, in 
particular in the Middle East, where drought has emerged as one of the most pressing 
concerns. When evaluating the severity of the drought affecting the research region, the 
utilisation of drought indices that are based on time series provides a useful framework. 
When compared to the years 1984, 2004, and 2014, variations in VCI values suggested 
that the vegetation cover was under minimal stress in 1974 and 2023, while it was 
substantially stressed in 1994, signifying the emergence of drought conditions due to 
below-average precipitation. The elements that influence soil moisture and plant growth 
can be broken down into three categories: atmospheric, topographic, and hydrological. 
Droughts are caused by a complex interaction between all of these categories. 

6 Conclusions 

To a greater extent than any other natural hazard, drought limits the availability of field 
crops and fodder. Vegetation cover is altered as a result of drought because plant 
moisture is lost. As a result, there are numerous methods available for tracking drought 
conditions. Large-scale measurements of soil moisture and plant health are now feasible 
thanks to remote sensing technology. Improved computer capabilities of remote sensing 
and GIS, along with novel processing and analytic methodologies, have opened up new 
avenues for drought monitoring. For the purpose of monitoring the spatiotemporal 
drought and its influence on vegetation in the city of Barry in Wales, UK from 1974–
2023, VCI maps are computed using the NDVI. This allows for mitigation efforts and the 
management of water resources. In order to determine the VCI, we downloaded a series 
of Landsat images covering the study area from 1974, 1984, 1994, 2004, 2014, and 2023 
taken with the MSS, Thematic Mapper (TM), ETM+, and OLI. 

This study’s findings show that the method used is a practical option for locating, 
categorising, and mapping out the spatial and temporal distribution of drought events, 
which in turn facilitates the identification of the most at-risk areas and times of year for 
drought and the execution of related planning and risk management processes. Drought 
had a significant influence on Barry City in 1994, with lesser effects in 1974 and 2023. 
Droughts in 1984, 2004, and 2014 all had rather minor impacts. Consequently, the lack of 
rain and the high land surface temperature during the crucial plant growth stage are to 
blame for the droughts. Maps obtained from the DEM were equally useful for analysing 
the distribution of plant cover in the study region. The VCI and NDVI readings were 
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shown to be significantly correlated due to the low rate of precipitation being closely tied 
to the decline in crop yield. Therefore, precipitation is the primary contributor in these 
regions’ vegetative stress. Here, the VCI correlated with rain more strongly than latitude 
did. Over the period of analysis, vegetation cover was revealed to decline. Droughts are a 
common problem in this region, and the resulting land degradation seems to have a 
significant impact, especially in 1994 (by a high percentage) and 1974 and 2023 (by a 
moderate percentage). Some ecological and terrain variables (precipitation and DEM), in 
particular in 1974, 1994, and 2023, had a stronger statistical relationship with the 
vegetative cover area. The VCI measured by Landsat had strong relationships with 
rainfall, latitude, and digital elevation model. One of the most important factors in 
determining rainfall amounts was altitude, especially in mountainous regions where water 
is lost due to the sloping terrain. The proposed methodology can be used in other 
drought-affected locations, not just in Wales or UK. 
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