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Abstract: The average battery life of drones in use today is around 30 minutes, 
which poses significant limitations for ensuring long-range operation, such as 
seamless delivery and security monitoring. Meanwhile, the transportation 
sector is responsible for 93% of all carbon emissions, making it crucial to 
control energy usage during the operation of UAVs for future net-zero 
massive-scale air traffic. In this study, a reinforcement learning (RL)-based 
model was implemented for the energy consumption optimisation of drones. 
The RL-based energy optimisation framework dynamically tunes vehicle 
control systems to maximise energy economy while considering mission 
objectives, ambient circumstances, and system performance. RL was used to 
create a dynamically optimised vehicle control system that selects the most 
energy-efficient route. Based on training times, it is reasonable to conclude that 
a trained UAV saves between 50.1% and 91.6% more energy than an untrained 
UAV in this study by using the same map. 
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1 Introduction 

1.1 Background 

Unmanned aerial vehicles (UAVs) are mainly used for short-term signal transmission 
(Witik et al., 2011) and delivery (Witik et al., 2011) for commercial and public 
applications. The issue of carbon emissions has received significant global attention in 
recent years. Due to the widespread use of UAVs and the development of smart cities and 
transportation, connected UAVs are expected to spend more energy on communication 
and swarm collaboration to meet the demand for safe, intelligent, and opportunistic air 
transportation (Witik et al., 2011). Therefore, it is essential to regulate energy 
consumption during the operation of UAVs.  

In general, autonomous vehicles have a shorter travel time than regular automobiles 
due to payload limitations and battery life (Witik et al., 2011). The flying time of small 
recreational UAVs is typically between 15 and 30 minutes (Aljohani et al., 2021). 
Batteries provide the drone with a power source and usable energy and play a significant 
role in determining its durability (Aljohani et al., 2021). Additionally, payload, wind 
resistance, and obstacles can limit the duration of UAV flights (Hong et al., 2021). In the 
past, most studies focused mainly on hardware to increase the operational duration 
(Yildirim et al., 2014; Duan et al., 2020; Elkerdany et al., 2020), and therefore, the 
efficiency of motors today exceeds 90% (Hong et al., 2021) owing to hardware 
breakthroughs. Accordingly, it is crucial to devise a strategy to boost the drone's energy 
efficiency without compromising its technology. Some researchers focused on the 
photovoltaic electricity management system (PPMS), which offers additional electric 
energy from the battery, and this method increased the working duration to 54.1 minutes 
(Jung et al., 2019). Verbeke et al. (2014) built a quadcopter-mounted hexacopter with two 
arms and large propellers, and UAV flight time improved by 58%. Knowing that 
previous researchers focused primarily on enhancing hardware, it was decided to focus 
on software development in this paper. Reinforcement learning (RL) could be one of the 
most effective methods for improving energy efficiency if external variables do not 
change, based on previous experience (Duan et al., 2020). Therefore, in this study, the 
optimal flight path will be determined based on the impact of mission objectives, 
environmental conditions, and system performance, resulting in an increase in power 
efficiency based on the RL framework. 

By using RL, this study demonstrates the planning of a maximum energy-efficient 
path for a single UAV. The study assumed that the drone will fly in an indoor 
environment without wind resistance at a low and steady speed. Therefore, the optimal 
energy problem can be transformed into an optimal trajectory planning problem. The 
overall technique follows three steps. First, the trajectory planning model for the UAV 
was trained with RL and deep determinist policy learning framework for optimal 
trajectory for joint path planning and energy optimisation. Finally, the trained model with 
energy consumption optimisation is compared to that of the untrained model with the 
same parameters. The investigation reveals that trained UAVs conserve between 50.1% 
and 91.6% more energy than their untrained counterparts. 
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2 Literature review 

UAVs are extensively used in industries, particularly for short-distance, low-quality 
transportation, such as aerial photography and signal transmission. However, due to the 
limitations of the payload and its own size, the flight duration is typically limited to no 
more than 30 minutes, especially for miniature recreational drones that can only fly for 
10 to 15 minutes (Chan and Kam, 2020). Therefore, some researchers have focused on 
increasing the flight duration of drones. 

Several previous researchers have focused on hardware enhancements to extend the 
working time of drones. Jung, for instance, used a PPMS to supply solar electricity to the 
UAVs, resulting in an operational time extension to 54.14 minutes (Jung et al., 2019). 
They also designed an autonomous, independent charging mechanism that can enhance 
the efficiency of constant charging in the open air (Jung et al., 2019). The study of Seoul 
National University involved optimal analysis and advanced design of UAVs, including 
propeller aerodynamic analysis, frame structure analysis, and electrical system analysis 
(Kim et al., 2018). As a results, they achieved a 30% increase in the drone’s hovering 
duration, from 31 minutes to 40 minutes (Kim et al., 2018). Verbeke et al. (2014) 
developed a hexacopter consisting of two arms with a large propeller attached to a 
quadcopter frame. This design led to a 58% improvement in UAV flying time. 
Additionally, some researchers have developed methods for evaluating the flight time of 
UAVs, excluding studies on extending flight time.  

Clearly, previous researchers have focused primarily on hardware breakthroughs, and 
the working period of UAVs has greatly risen. Although several researchers have 
addressed the issue of the working period, there has been a dearth of studies on energy 
consumption during the flight, especially using the RL-based method. 

According to the study conducted by Chan and his team, they used a carbon strand 
composite material and designed the propulsion system components to reduce the power 
consumption of an Octa-rotor UAV (Chan and Kam, 2020). Their study demonstrated 
that the proposed approach can generate an accurate prediction with an error rate of less 
than 7.4% (Chan and Kam, 2020), and this method can be applied in UAV design and 
flight path planning. Duan's team employed a neural network-based model to estimate the 
power consumption of a drone in order to maximise flight control (Duan et al., 2020). 
This model provides an accurate and adaptable prediction, which optimises the flight 
time of a drone by calculating its energy consumption during the flight (Duan et al., 
2020). Hong took into account real-time interactions with the surrounding environment, 
where the drone must avoid obstacles such as other drones or barriers (Hong et al., 2021). 
The advanced TD3 model conducts energy-efficient route planning at the edge-level 
drone, and the overall energy consumption of in-flight drones with online path planning 
is approximately 106% of the total energy consumption of in-flight drones with offline 
path planning (Hong et al., 2021). 

To enhance communication quality while reducing the overall energy consumption of 
the network, Ajiohani et al. (2021) presented a distributed RL-based energy-efficient 
framework for UAV networks with limited energy under jamming attacks. This 
architecture allows each relay UAV to autonomously determine its transmit power based 
on previous state-related data, without knowledge of the moving trajectory of other relay 
UAVs or the jammer, and this technique reduces energy usage by 22.8% compared to the 
traditional method (Aljohani et al., 2021). Additionally, Yildirim et al. (2014) have 
proposed an energy-efficient UAV-assisted IoT network, in which a low-altitude 
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quad-rotor UAV provides a mobile IoT device data gathering service. They have 
introduced an optimisation framework that concurrently optimises the UAV’s trajectory, 
devices; association, and transmit power allocation at each time slot, while ensuring that 
each device meets a specified data rate limit. Their numerical results validate the research 
and provide various insights into the optimal UAV trajectory (Yildirim et al., 2014). 
Compared to the particle swarm optimisation algorithm, the proposed technique reduced 
the overall energy consumption of all devices by 6.91%, 8.48%, and 9.94% in 80, 100, 
and 120 available time slots of UAV, respectively (Yildirim et al., 2014). 

According to the previous studies, it is known that even though some researchers 
focused on the RL-based method to maximise energy efficiency, they did not combine 
energy consumption with path planning. Therefore, this study aims to improve power 
efficiency through optimal trajectory planning. To achieve this, the study uses the DJI 
Mavic 3 as a commercial example of a drone’s battery specifications, with all data 
obtained from the DJI UK official website. 

The primary work of this study can be separated into two main objectives. Firstly, 
design and construct a mathematical model for energy-efficient optimisation of 
dynamical UAV motion control based on mission objectives, environmental conditions, 
and system performance. Secondly, to validate the designed autonomous control system, 
an extensive model evaluation will compare the power consumption of the untrained 
model with the trained model by conducting a power consumption experiment for 
commercial UAVs. 

2.1 Contribution 

Based on the limitation of the existing studies, the following difficulties were 
encountered. Firstly, the route was clear of obstacles. Secondly, data such as speed, flying 
angle, and SOC were never collected, resulting in UAV crashes and abrupt power loss. 
Lastly, due to random flights, the start and end points were not well-defined. 

The issues mentioned above translate into the main purpose of this study, which is to 
design, construct, and test an autonomous vehicle control system that is dynamically 
tuned to optimal energy efficiency based on mission objectives, environmental 
circumstances, and system performance. The mean contributions of this study can be 
summarised as follows. 

• First, theoretical knowledge and a detailed literature review were proposed to 
identify the main limitations of exiting UAV path planning for joint energy 
consumption optimisation. Then, an efficient RL-based learning framework for joint 
energy consumption and path planning optimisation was proposed. 

• In the second phase, the RL and DDPG models were included in the UAV model, 
which is trained to compute the optimal trajectory. This model can output the UAV's 
speed and flying angle when determining if the UAV is in a stable cruise. This phase 
investigated how to select the ideal path by teaching the drone while it functions; 
SOC would be considered later. 

• During the third stage, the battery model was included in the reward function of the 
RL-based UAV model, enabling real-time monitoring of the battery's SOC. In 
addition, by comparing the SOC of trained and untrained UAVs, it is feasible to 
establish the model was designed using RL. 
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2.2 Paper organisation  

The remainder of this paper is organised as follows. 
Section 2 provides details on the methodology used in this study, which focuses on 

the fundamental design of RL for energy-aware path planning of the UAV. 
Section 3 describes the process of designing the autonomous control system. The first 

step is the conceptual design of the model and problem formulation. Next, the simulation 
environment is developed, and a mathematical model is proposed that can determine the 
ideal trajectory using RL and Q-learning. 

Section 4 discusses the implementation for comparison. The optimal trajectory and 
Simulink results of the developed autonomous control system are presented, along with a 
comparison of performance that focuses on the trajectory and energy consumption of 
untrained and trained models. 

The final section concludes this study and highlights the final results and 
contributions. 

3 Methodology 

3.1 Policy design for the RL model 

This section elaborates on the main techniques employed in this study, including RL and 
Q-Learning. 

RL is a subfield of ML that deals with how an intelligence agent can maximise 
cumulative rewards in a given environment. Unlike other ML techniques, RL training 
requires mapping the environment to an action. Therefore, actions are chosen to 
maximise the value of rewards obtained from the environment, and the most effective 
strategies are learned through trial and error (Lyu et al., 2022). The diagram below 
illustrates the essential components of the RL model. 

The RL model can be thought of as the agent performing actions in the environment, 
while receiving feedback from the states. As shown in the previous section, the core RL 
model consists of five key components: agent, environment, action, state, and reward. 

Several key considerations of the design of the RL model in this study are as follows. 

• The agent receives an observation and a reward at the end of a time step, and then 
sends an action to the environment. 

• The environment is the physical world in which the agent operates. In this study, it is 
the map where the UAV works. 

• State describes the current condition of the agent. 

• Reward indicates the feedback that the agent receives from the environment. 

• The policy determines the action for each RL model. In this study, the drone aims to 
maximise energy efficiency. 

RL is defined as the process of learning "how to maximise advantage." Instead of 
mandating which tasks must be performed, the RL model must identify which behaviours 
will produce the highest score (Lyu et al., 2022). Frequently, actions impact not only 
current rewards but also future rewards and subsequent situations (Lyu et al., 2022). 
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Figure 1 RL model (see online version for colours) 

 

Based on the above summary of RL, it is evident that RL can be one of the optimal 
strategies for maximising energy efficiency in this study. Due to the time constraints of 
this study, Q-learning, a sub-method of RL, will also be examined. Q-Learning is a 
model-free RL paradigm for determining the value of an action in each state. This 
technique can allocate random rewards and transitions without adaptation (Tan et al., 
2021) and without the need for an environment model. This study applies Q-Learning to 
RL in order to adapt the policy to unknown settings. 

3.2 Action selection strategy 

The previous section discussed the method for selecting the optimal path with RL. This 
part describes the strategy for detecting the SOC of the battery of the drone with the 
RL-based path planning framework. 

This study estimates the battery SOC with the extended Kalman Filter (EKF) 
approach. The Kalman Filter (KF) is an effective recursive filter that estimates the state 
of a dynamic system from a sequence of noise-free observations (Yang and Li, 2016). 
The basic KF only applies to Gaussian-distributed systems, but the EKF can be used for 
nonlinear dynamic systems in time. EKF is a suboptimal filter (Yang and Li, 2016) since 
its fundamental concept is linearising a nonlinear system before applying a KF. Since the 
starting SOC of the battery is unknown, EKF is required to calculate the battery's SOC. 
This section will discuss EKF. 

When the state or measurement equation is nonlinear, EKF is commonly utilised. The 
EKF truncates the Taylor expansion of the nonlinear function by linearising the first 
order and ignoring the remaining higher-order components. Thus, the nonlinear problem 
is turned into a linear one, allowing the nonlinear system to be filtered using the Kalman 
linear filtering approach (Liu et al., 2007). 

The EKF is a simple nonlinear approximate filtering algorithm for cases where the 
equations of motion or observation are not linear (Yang and Li, 2016). To simplify 
computation; the EKF linearises the equations of motion/observation using a first-order 
Taylor decomposition. KF and EKF share the same algorithmic structure, both describe 
the posterior probability density in Gaussian form, and both are obtained by computing a 
Bayesian recursive formula (Liu et al., 2007). The most significant difference is that the 
EKF's state transfer matrix (state information at the previous moment) and observation 
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matrix (one-step prediction) are both Jacobi matrices of state information when 
calculating the variance (Liu et al., 2007). 

4 System model 

4.1 Problem formulation 

This part focuses on the conceptual design of the model and the problem formulation 
derivation. It is anticipated that the quadcopter drone will be utilised in this study. The 
free body diagram (FBD) is illustrated in Figure 1. 

Figure 2 FBD of UAV (a) shows the FBD of the single propeller and (b) shows the FBD of two 
coordinate systems 

  
(a)     (b) 

Note: Upward-pointing arrows indicate lift and rotating arrows indicate torque. 
Source: Chan and Kam (2020) 

The assessment of a single propeller is the first step. Generally, the lift and torque 
generated by each of the UAV's four propellers are comparable. For the purpose of this 
study, it is assumed that each propeller generates the same amount of lift and torque. 
When a single propeller rotates, as shown for M1, M2, M3, and M4, an upward lift force 
F and a rotational moment M are generated. The direction of the left force is 
perpendicular to the propeller, pointing upwards, and the direction of the rotational 
moment is assumed to be parallel to the location plane of the drone and perpendicular to 
the arm. 

The second phase involves establishing two distinct coordinate systems: one for the 
ground, represented by Xg–Yg, and one for the UAV, represented by Xb–Yb. 
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The overall lift in the z-direction during vertical take-off of the UAV can be stated as 
follows: 

4bzF F F F F F= + + + =  (1) 

where, FZh means the overall lift in the z-direction. 
Assume uniform linear motion along the x and y axes with no external forces to 

simplify the concept. hxF  stands for the overall lift in the x-direction while hyF  is on 
behalf of the overall lift in the y-direction. Therefore 

0bxF =  (2) 

0byF =  (3) 

In the third phase, the roll angle φ, pitch angle θ, and heading angle ψ, as well as air 
resistance, are analysed. 

 d

x

C
I

−
 φφ  (4) 

d

y

C θθ
I

= −
  (5) 

d

z

C ψψ
I

= −
  (6) 

where, Cd is the coefficient of drag. 
To evaluate these equations, however, the UAV coordinate system is used. Convert 

them to the Earth's coordinate system and take gravity into account. 
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φ φ
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It follows from Newton’s second law that, 

( ) 4
g

cos sinθcosψ sin sinψ F
x

m
+

= φ φ  (9) 

( ) 4
g

cos sinθsinψ sin cosψ F
y

m
−

= φ φ  (10) 

( ) 4
g

cos cosθ Fz g
m

= − φ  (11) 

Use the following formula to get the overall energy consumption of a single drone. 
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total motor communication externalE E E E= + +  (12) 

• Emotor, it is the amount of energy required to convert electrical energy into 
mechanical energy and gravitational energy. This energy consumption is typically 
proportional to the UAV's speed, altitude, and duration of the operation. 

• Ecommunication indicates the amount of energy expended during message reception and 
transmission. Compared to the energy required by the engine, this study’s 
communications consumption is little. 

• Eexternal include additional energy expansion of the battery and energy generated by 
air resistance, and it can be deemed constant. In the framework of the mathematical 
model, this proportion can be subtracted immediately as a constant number, such that 
the actual available energy equals the capacity of the battery minus the percentage of 
energy. 

actual externalE E E= −  (13) 

where, E represents the original capacity of the battery. Eactual represents the actual 
available energy. Therefore, Etotal ≈ Emotor + Eexternal and Eactual ≥ Etotal. In addition, 
Emotor can be separated into three parts, Etakeoff, Ehover and Elanding. 

motor takeoff hover landingE E E E= + +  (14) 

As the drone used in this study runs at a constant and modest speed, take-off and landing 
are performed just once. Therefore, the preceding equation can be simplified as follows: 

motor hoverE E≈  (15) 

The relationship between time and energy can alternatively be described as 

[ ] [ ]* arg [ * ]*3.6Energy J Voltage V Ch e mA h=  (16) 

[ ] [ ]* [ ]Energy J Power W Time s=  (17) 

[ * ][ ]
[ ]* [ ]

batterycapacity W hworktime h
Voltage V Current A

=  (18) 

In conclusion, the design of the Simulink model is determined by the preceding 
equations. 

3.2 Optimal trajectory model 

This section introduces the design of the RL model for the UAV, including the reward 
function. In the first stage, only the trajectory will be examined. The design of the UAV 
model is shown in Figure 4, illustrates how to train a DDPG model and create UAV flight 
paths. 

The environment model will be constructed using the UAV model, which will also be 
described in the next section. The model's variables are initialised, and as the take-off of 
an UAV differs from that of a standard aircraft, there is no taxiing movement during 
take-off; hence, the heading angle and angle of attack are irrelevant (Hong et al., 2021). It 
is assumed that the drone can launch under stable conditions. 
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The sample interval and simulation duration are specified. The sample period affects 
the timing of action and reward, which influences the total duration of learning (Zhang 
et al., 2022). The average processing time for each episode is determined by the duration 
of the entire simulation (Hong et al., 2021). The subsequent stage is to develop an 
integrated model. To train an intelligent body for the UAV model, create an integrated 
model with a ready-to-train block of RL intelligent bodies using the exiting function. 

As shown in the RL model in Figure 1, the main components of the model are the 
state, action, and reward function. In this study, the state is the real-time location and 
battery SOC of the UAV, while the action aims to choose the optimal trajectory to move. 

The reward function is a crucial component of RL and has a significant impact on its 
performance. In this paper, a non-parametric reward function is proposed, which avoids 
the time-consuming weighting parameters and complexity of traditional reward functions 
in RL (Yan et al., 2022). As mentioned earlier, the SOC of the battery is an important 
parameter of the reward function. Specifically, after each operation, a higher SOC will 
result in a larger reward compared to a lower SOC. Therefore, the non-parametric reward 
function could be defined as R = SOC. 

The first step in this stage is to specify the names for the observation and action 
specification and to restrict the range of the thrust action. This allows for more efficient 
training and prevents potential crashes (Zhang et al., 2022). The agent, observation, and 
action blocks were combined at this level, and a fixed random number generator was 
configured to increase repeatability (Wang et al., 2021). 

DDPG estimates the long-term reward of observation or action using a critic value 
function model. To create a critic, a deep neural network with two inputs (observations 
and actions) and one output (Hu and Zhang, 2022) is first developed. This can be used to 
predict deterministic policies and maximise total reward by a single step of off-policy 
policy modification (Hu and Zhang, 2022). Before the development of DDPG, the 
problem of continuous actions in RL was often solved by discretising the continuous 
actions and then applying RL. However, DDPG makes it possible to directly predict 
continuous action (Hu and Zhang, 2022), which is the approach used in this study. 

Additionally, the actor's representation is generated using the provided neural 
network and choices, and the agent's observation and action criteria must also be 
specified (Hu and Zhang, 2022). An alternate code can be used for this operation. Using 
actors, the DDPG agent determines the action to take. First, a deep neural network with 
one input, i.e., observation, and one output, i.e., action, is formed to generate an actor 
(Khodabakhsh et al., 2018). To build a DDPG agent, the DDPG intelligence body 
parameters must be provided. Finally, the actor's representation is used to produce the 
agent. 

Before training an agent, training choices must be established. The maximum number 
of learning episodes in each session has been established to be 1,000, with each episode 
lasting a maximum of the ceil time step. Then, training is discontinued when the agent's 
average total reward for 10 consecutive sessions exceeds 450. After many rounds of 
training, 450 was chosen as the judgment criterion since it represented the most efficient 
cumulative reward. G Training stop when the agent receives an average cumulative 
reward greater than 450 over 10 consecutive episodes, indicating that the agent can drive 
the UAV to the goal position. Additionally, the intelligence of each episode is tripled 
when the overall reward reaches 450. It should be noted that RL model training is a 
computationally challenging and time-consuming procedure. 
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To validate the performance of the trained model, UAV simulation models were run 
in the environment. The following Simulink model depicts the design of the agent. The 
model consists of five basic components, as seen in the image below: the action module, 
the environment module, the accomplishment module, the reward module, and the 
observation module. The action module enables the drone to maximise its energy 
efficiency. Details on the environment module will be provided later. The achievement 
module holds previously processed information. The reward module conveys the 
environment's response to the agent for subsequent delivery. Finally, upon completion of 
a particular action, the observation module collects data by observing the environment's 
status (Khodabakhsh et al., 2018). 

Figure 3 RL model 

 

Notes: The environment is the map where the UAV works. Reward indicates the input 
the agent will get from the environment. the action is to select the optimal path 
planning. 

The structure of the module is represented by the following model in Figure 3. The thrust 
is the module's first input, which propels the drone forward. The thrust parameters are 
sent to the saturation dynamic block, which provides an output signal whose value is 
restricted by the saturated input value up or down (Sun et al., 2021). It guarantees that 
succeeding blocks can recognise the data at the beginning of the block. The initial data 
processed by the saturation dynamic block is then delivered, respectively, to the reward 
block and the dynamics block. The output parameters of the dynamics block are the new 
position of the drone, new flight angles, velocity, acceleration, and the wrapped pitch 
angle. The wrapped pitch angle reflects the adjusted flight angle of the drone after 
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training. The position coordinates represent the new position of the UAV, and other 
parameters will be used throughout the observation block. 

The modified position was sent to the bound block, and the output parameters 
consisted of the finalised data. Additionally, the reward block receives the wrapped pitch 
angle, position, derivation of flight angles, and constraint data. These environment input 
parameters are handled by the reward block and delivered to the agent in the upcoming 
episode (Sripad and Viswanathan, 2021). The Simulink model's process should match the 
UAV mathematical model. 

The bound block is used to limit the range of mobility of the drone. By restricting the 
x and y coordinates, the drone's flying range is confined within a specific map. The 
following reward block is the primary block of the system, which delivers the agent the 
environment block's feedback. This block is mostly used to calculate the parameters the 
agent can accept (Apuroop et al., 2021). 

The final stage of developing the RL model is to create an integrated model. To train 
the agent for the UAV model, the code provided can be used to generate an integrated 
model with a block of RL intelligence that is ready for training. 

Figure 4 Current and SOC of battery (see online version for colours) 

 

3.3 Energy consumption model 

Accurate calculation of the SOC is crucial in the field of UAV batteries to ensure the 
safety of charging and discharging, optimise battery performance, and extend the range 
and service life of UAV. One of the most important determinants of whether the RL 
model can maximise the UAV's energy efficiency is the accuracy of the SOC estimate for 
the drone's battery. (DJI Official, 2022). Therefore, developing, creating, and testing an 
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accurate Simulink model of the UAV battery is the most crucial component of producing 
the SOC. 

The model demonstrates the current and SOC's adaptability. While the change in 
current and SOC corresponds to the previous formulas, the idea must also be updated 
because the drone's operating environment cannot be simple. For example, the Coulomb 
counting technique calculates the SOC in real-time from the current value, while the 
internal resistance method relies solely on the impedance characteristics of the cell to 
calculate the SOC (DJI Official, 2022). 

In this study, only the simulation model of SOC is considered, which means that an 
ideal condition for the initial state of the battery was used, and it can be an easier metric 
to evaluate the dynamics of SOC, for example in perception evaluation. Therefore, the 
initial battery SOC was chosen as 1 but indeed can be any suitable value in the real 
world. The change of the current and SOC are shown in Figure 4. 

In addition, the battery is a complex, nonlinear, time-varying system, making it 
difficult to represent the variation of battery parameters under actual operating conditions 
(Xin, 2020). The method given in the preceding section utilises straightforward metrics to 
determine SOC. Some signal estimation-based systems employ the battery's SOC as an 
interference signal (Xin, 2020). Therefore, EKF could be well-applied to the estimated 
SOC. 

4 Implementation for comparison 

4.1 Simulation results and discussion 

The process of RL in this study can be understood as a scoring game where points are 
deducted for choosing a longer path and added for choosing a shorter path. This approach 
trains the drone to select the optimal path in any environment. 

Figure 5 shows the training results of the RL model. The total number of training 
episodes depicted in Figure 5(a) was 2,000. However, as the graph shows, the difference 
remained constant at over 400 episodes. As seen in Figure 5(b), the total number of 
training episodes was eventually reduced to 1,000. Thus, the Simulink model can learn 
how to pick the optimal trajectory and reduce the total time spent on training, thereby 
increasing the effectiveness of the training. 

4.2 Optimal trajectory 

The original Simulink model has been enhanced using Q-Learning to improve the 
visibility of the training outcomes. The Q-Learning algorithm is a model-independent 
off-policy RL method. Based on the value of each completed step, the algorithm 
progresses to the next phase (Sun et al., 2021). Q-Learning is a value-based RL approach 
in which Q represents the expected reward of taking an action in a certain state at a given 
time. The environment will send input to the agent in response to its actions; hence, the 
algorithm's basic premise is to generate a Q-value table of states and actions and then 
select the action that will provide the highest reward based on the Q-value (Sripad and 
Viswanathan, 2021). 
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Figure 5 Learning results (a) learning results 1 (b) learning results 2 (see online version 
for colours) 

  
(a) 

  
(b) 

Notes: The light blue line represents the prize for each episode, whereas the dark blue line is 
the average payment for all episodes. The yellow line represents episode Q0. 
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Figure 6 is a map of the area where the UAV is operating, including any obstructions. 

Figure 6 Trajectory map of the UAV (see online version for colours) 

Map

StartPoint

EndPoint

 

Notes: The light-yellow points stand for the start point and the end point of the UAV. The 
Purple line means the obstacle on the map. The deep yellow lump is the place 
where available for flying. 

Q-learning is essentially a greedy algorithm, which means that if the action with the 
highest expected reward is chosen at each step, it may fail to explore other potential 
actions during the training phase or fall into "local optimality" (Khodabakhsh et al., 
2018), where it fails to select the optimal trajectory. Therefore, coefficients are chosen to 
ensure that the agent has a chance of acting optimally and a certain probability of taking 
random actions (Chan and Kam, 2020). To avoid small loops, the paths taken are stored 
in a memory bank. 

By setting the reward value for diagonal movement to 2, the drone is prevented from 
moving, for example, up and then left and then down rather than moving directly to the 
left. This value is determined based on the relative distance between the two map frames. 
The following figures illustrate the results of RL on the trajectory. 

Comparing the above (a) and (b) figures in Figure 7, it could know that the maximum 
and minimum length of trajectory in (a) is larger than that of (b). 

The length of trajectories under various learning techniques is depicted in Figure 8. 
By comparing them to Figure 7, it was feasible to conclude that the trajectory became 
shorter after 250 learning events. 
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Figure 7 Length of trajectory (a) length of trajectory 1 (b) length of trajectory 2 (see online 
version for colours) 

  
(a)     (b) 

Notes: The horizontal coordinate represents the number of training episodes, and the 
number on the coordinate multiplied by 10 is the total number of training 
episodes. The vertical coordinate represents the length of the moving trajectory. 

Figure 8 Comparison of trajectory (see online version for colours) 

StartPoint

EndPoint

StartPoint

EndPoint

StartPoint

EndPoint

StartPoint

EndPoint

StartPoint

EndPoint

StartPoint

EndPoint

StartPoint

EndPoint

StartPoint

EndPoint
 

Notes: The pink line means the obstacle on the map. the orange lump is the place where 
available for flying, and the yellow cube with a red point stands for the working 
trajectory of the UAV. 

Figure 8 displays a comparison of trajectories. The trajectory when the drone was initially 
untrained is represented in the upper left corner, while the trajectory with the shortest 
training is shown in the second column and third row. As demonstrated in the graph 
above, the trajectory does not degrade as the number of training episodes increases during 
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the learning process. This is also consistent with the graphed data on episode reward and 
trajectory length. All the evidence suggests that the learning outcomes were accurate. 

Figure 9 displays the Simulink model's shortest path, which is the optimal trajectory 
for optimising energy efficiency. 

According to the simulation results, the RL-based UAV area coverage route planning 
framework developed in this study allows the UAV to cover the mission area in a static 
environment with a small number of steps. However, in a dynamic environment with 
moving obstacles, the framework for UAV area coverage route planning based on deep 
RL still enables the UAV to cover the mission area in a limited number of steps without 
colliding with moving objects. 

Figure 9 The shortest trajectory (see online version for colours) 

 

4.3 Performance comparison 

In the previous discussion, the SOC of the battery and UAV trajectories were analysed 
individually. It is known that learning can be used to choose the optimal trajectory, and 
the SOC of the battery decreased nonlinearly during operation. However, the previous 
discussion only addressed the UAV's initial and final learning stages. Therefore, in this 
paragraph, untrained trajectories and SOC are compared with trained trajectories and 
SOC. 

After adding the battery model to the reward block, the model was run, and the results 
were comparable to those previously presented. After about 15 minutes of learning, the 
optimal path can be chosen. The simulation results show that the RL-based UAV area 
coverage route planning framework developed in this study enables the UAV to cover the 
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mission area in a static environment with a short number of steps. However, in a dynamic 
environment with moving obstacles, the framework for UAV area coverage route 
planning based on deep RL still enables the UAV to cover the mission area in a limited 
number of steps without colliding with moving objects. As shown in Figure 8, the upper 
left corner represented the trajectory when the drone was initially untrained, while the 
second column and third row represent the shortest training trajectory. Therefore, it is 
evident that the shortest path can be chosen by using RL. 

The study of optimising the performance of UAVs has a long history and has 
generated a theoretical framework. In recent years, the optimal design of energy-efficient 
trajectories for long-flight-duration drones has attracted substantial interest (Aljohani 
et al., 2021) due to emerging energy issues. Thus, the SOC of the drone's battery is a 
critical indicator of whether it has chosen the optimal flight path. The data demonstrate 
that the trained drones utilise less energy. After several rounds of RL, it was determined 
that a trained UAV saves between 50.1% and 91.6% more energy than an untrained UAV 
on the same map. 

5 Conclusions 

In this study, a dynamically optimised vehicle control system capable of selecting the 
optimal path was developed. Then, an EKF-based mathematical model for the battery 
SOC estimation under varying UAV trajectories was developed. The two control systems 
were combined to evaluate the proposed control system's potential to satisfy the study's 
objectives. After training on a specified map with obstacles, the results showed that the 
UAV can calculate the optimal movement path and jointly optimise energy efficiency. 
The dynamically optimised vehicle control system that can achieve maximum energy 
efficiency depending on mission objectives, environmental conditions, and system 
performance. The overall system shows the efficiency of combining RL-based path 
planning and battery SOC monitoring model to achieve joint optimisation for the UAV 
status under an ideal simulation environment.  

In the future, more challenging scenarios will be used for comprehensive testing 
purposes. To do further exploration, the method used in this study will be verified using 
increased obstacles and larger site areas. Additionally, to improve the efficiency of 
energy consumption optimisation, Explainable RL might be useful.  
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