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Abstract: Energy management of hybrid electric vehicle (HEV) is crucial for 
improving fuel economy and reducing emissions. Due to the challenges in both 
development and implementation, simplified algorithms using rule-based 
strategies or equivalent consumption minimisation strategy (ECMS), still 
prevail in real vehicle applications. Taking an HEV with P2 hybrid powertrain 
for example, a bi-level hybrid model predictive control (bi-HMPC) algorithm is 
proposed. The upper level calculates the optimal engine/motor torque 
distribution based on linear time-varying model predictive control (LTV-MPC), 
while the lower level optimises the gear ratio via hybrid model predictive 
control (HMPC). The algorithm is preliminarily validated via simulations, 
which demonstrate that it has better fuel-saving performances than ECMS. 
Then the LTV-MPC is implemented in real vehicle and validated via 
dynamometer tests. Results show that it can run real-time and reduce the fuel 
consumption from 7.05 L/100 km to 6.2 L/100 km, together with noticeable 
improvements in pollutant emissions. 

Keywords: hybrid electric vehicle; HEV; energy management; linear time 
varying model predictive control; fuel economy; real vehicle tests. 
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1 Introduction 

To cope with energy shortages and environmental pollution, the automakers have 
proposed various of new energy vehicle strategies. Hybrid electric vehicle (HEV) is one 
of the promising short-term solutions (Bayindir et al., 2011). In HEV, internal 
combustion engine (ICE) can work more efficiently, based on the working point 
coordination with electric motor/generators (Liu and Peng, 2008). According to a recent 
report by Mordor Intelligence (2021), the global HEV market is expected to reach a value 
of USD1,166.65 billion by 2026, registering a compound annual growth rate of 29.13% 
from 2021 to 2026. In China, under the pressure of the so-called dual credit policy, 
including corporate average fuel consumption and new energy vehicle credit regulation, 
the automakers are pushing for both pure and HEVs. 

As the core technology of HEV development, energy management is to coordinate 
the engine and motors/generators for optimised fuel economy and pollutant emission, 
while guaranteeing responsive power performance required by driver or upper level 
controls. Rule-based approaches are still popular in real applications, but their 
developments, including rule setting and parameter calibrations, are usually  
time-consuming. The optimisation-based solutions are getting more and more attention 
from algorithm developers. This is made possible due to their excellent capabilities in 
capturing the entire problems from system modelling to control solutions, including the 
handling of multiple objectives and constraints. 

However, the optimal energy management problem is basically a nonlinear, 
constrained, and dynamic optimisation problem due to the nonlinearities of certain 
dynamic powertrain model (Borhan et al., 2010). Dynamic programming (DP) (Lin et al., 
2004) or equivalent consumption minimisation strategy (ECMS) (Serrao et al., 2009) are 
well-studied in the past decades. Pisu et al. gave a detailed derivation of equivalent  
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conversion coefficient in ECMS (Pisu and Rizzoni, 2005; Pisu et al., 2005). Musardo  
et al. (2005) proposed a new adaptive ECMS and realised real-time energy management 
of HEV. On the other hand, model predictive control (MPC) is also an algorithm widely 
studied and used in industrial applications (Cairano et al., 2007; Lee, 2011), though 
usually MPC has disadvantages of computing load and difficult handling with nonlinear 
HEV models. To cope with this challenge, Iyama and Namerikawa (2014) made the 
linearisation of the nonlinear model by constantly switching the corresponding model 
parameters. Borhan et al. (2011) also tried to linearise the model and applied linear  
time-varying model predictive control (LTV-MPC). However, there are still limited 
reports on its implementation for HEV energy management in real vehicles. On the other 
hand, Jiang et al. (2020a) attempted to optimise HEV’s torque distribution and gear ratio 
simultaneously via a complicated hybrid model predictive control (HMPC), which has 
difficulty in real-time calculation due to model’s complexity. 

In this paper, we develop a bi-level optimisation algorithm for the energy 
management of a P2 hybrid passenger vehicle and carry out several simulations to 
validate the proposed algorithm. The upper LTV-MPC-based torque optimisation is 
further validated in real-vehicle experiments. The contribution of this paper is as follows. 

1 A bi-level algorithm for energy management of a P2 hybrid passenger vehicle is 
proposed. The original hybrid nonlinear optimisation problem is divided into two 
sub-problems, i.e., the engine/motor torque distribution optimisation is solved using 
linear time varying MPC in the upper level and then transmission ratio optimisation 
is realised in the lower level. 

2 Both simulation and bench tests are carried out, showing the proposed algorithm can 
run in real-time and realise effective implementation in a real vehicle. With only 
three rounds of bench tests, the model-based controller can achieve promising fuel 
consumption performances close to the original rule-based strategy (RB), which in 
contrast is time-consuming in development and testing. The proposed controller 
shows great potential in accelerating the controller development in real practice. 

The rest of this paper is organised as follows. Section 2 introduces our HEV system 
model. In Section 3, we formulate the energy management strategy based on a linear 
time-varying MPC. Then simulation results are presented in Section 4 and a series of real 
vehicle test results are shown in Section 5, which prove our LTV-MPC’s ability in 
improving fuel economy. Finally, conclusions are given in Section 6. 

2 Vehicle modelling 

A P2 hybrid passenger vehicle, as schemed in Figure 1, is taken as the target vehicle for 
the development of energy management strategy. By adding an electric motor and a 
disconnecting clutch between the engine and transmission in a traditional ICE vehicle, 
the electric motor can work in either driving or generating modes. Table 1 lists the basic 
HEV parameters. The bench test data of its engine and motor are presented in Figure 2, 
i.e., brake specific fuel consumption (BSFC) for engine and overall efficiency for motor, 
respectively. 
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Figure 1 Block diagram of P2 type HEV (see online version for colours) 

 

Table 1 Basic parameters of the studied HEV 

Parameters Value Parameters Value 
Mass 1,600 (kg) Final reduction ratio 2.808 
Tire radius 0.32 (m) Mechanical efficiency 

of drivetrain 
0.95 

Vehicle frontal area 2.275 (m2) Battery internal 
resistance 

0.1 (Ω) 

Transmission gear 
ratios 

I:5.22; II:3.11; III:2.13; 
IV:1.57; V:1.27; VI:1.05; 

VII:0.89 

Battery capacity 11 (kWh)/ 
30 (Ah@370V) 

Engine’s maximum 
torque/power 

180 (N∙m)/86 (kW) Motor’s maximum 
torque/power 

260 (N∙m)/ 
80 (kW) 

Figure 2 The BSFC data of engine (in g/kWh) and overall efficiency of motor (see online version 
for colours) 

  

According to Figure 2, the nonlinear models of engine (F) and motor (G) are obtained via 
polynomial fitting, similarly to that in our previous publication (Jiang et al., 2020b). 
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where fm  is the fuel consumption rate of engine, Teng and ωeng represent engine torque 
and speed, respectively. ηmot, Tmot and ωmot represent motor efficiency, torque and speed, 
respectively. The model coefficients are listed in Table 2. 
Table 2 Coefficients of nonlinear models F and G 

Coefficients of F Coefficients of G 
f00 = 3.9e-1 f10 = –2.7e-3 f01 = –2.5e-2 P00 = 6.8e-1 P10 = 2.2e-3 P01 = 3.8e-4 
f20 = 6.9e-6 f11 = 2.6e-4 f02 = 3.2e-4 P20 = –7.2e-6 P11 = –3.7e-6 P02 = –6.5e-7 
f30 = 1.6e-9 f21 = –3.8e-7 f12 = –2.2e-6 P30 = 1.0e-8 P21 = 1.4e-8 P12 = 1.7e-9 
f03 = –8.5e-7 f40 = –6.1e-12 f31 = 1.7e-10 P40 = –4.8e-12 P31 = –2.0e-11 P22 = 2.2e-13 
f22 = 2.4e-9 f13 = 5.2e-9  P50 = –3.6e-16 P41 = 1.0e-14 P32 = –1.8e-15 

As for battery modelling, this paper uses an equivalent circuit model by referring to Pang 
et al. (2001). According to Kirchhoff’s voltage law and equivalent circuit principle, the 
formula of current I can be derived as equation (2). 

2
int

int

4
2

oc oc battV V R PI
R

− −=  (2) 

where Voc is open-circuit voltage of battery, and Rint and Pbatt represent internal resistance 
and power, respectively. The state of charge (SOC) of battery can be obtained via the 
calculation of total charge/discharge current according to the Coulomb efficiency, i.e., 

0

batt

Q Idt
SOC

Q

−
=   (3) 

where Q0 and Qbatt denote initial and total charges of the battery, respectively. Combining 
equations (2) and (3), the change rate of SOC can be drawn as equation (4), where Pbatt is 
the battery power. 
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 (4) 
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Longitudinal dynamics model is used to obtain the vehicle acceleration under different 
driving torque inputs. The model can be established according to the force analysis and 
Newton’s second law as 

( ) 0eng mot g
b r

w

T T i i
MV F F

R
+

= − −  (5) 

where Fr is the total driving resistance, Fb is the vehicle braking force, M is the vehicle 
mass, RW is the rolling radius of tyres, V is the vehicle speed, ig and i0 are the ratios  
of the transmission and final reduction, respectively. Here, the total resistance  
force is composed of air drag, rolling and gradient resistances, i.e., 

21 cos( ) sin( ).
2r dF C ρAV μgM θ Mg θ= + +  Cd denotes air drag coefficient, ρ denotes air 

density, and μ and θ represent road friction coefficient and slope angle of the road, 
respectively. 

3 Bi-level controller development 

To propose energy management strategy for the P2 HEV, this paper adopts MPC to 
optimise the gear ratio and torque distribution of engine and motor. However, the 
optimisation problem is hybrid since the dual clutch transmission ratios are discrete but 
not continuous. To address this hybrid problem, a bi-level hybrid model predictive 
control (bi-HMPC) is developed. The upper level optimises the torque distribution via 
LTV-MPC, while the lower level formulates the gear ratio optimisation as a HMPC and 
then solves it through mixed integer quadratic programming (MIQP). 

3.1 Torque optimisation based on LTV-MPC 

Combining the above model equations (1)–(5), a nonlinear model of HEV can be 
obtained. 

( , , )
( , , )

x f x u d
y g x u d

=
 =


 (6) 

where the state variable x = [V, SOC, mf]T, continuous control variable u = [Teng, Tmot]T, 
the disturbance d = [Fr], and the system output y = [V, SOC, mf]T. 

Taylor expansion is employed to linearise the model at the current operating point (x0, 
u0, d0) of the controlled system, as shown in equation (7). As the operating point moves, 
system matrices of the linear model will also change. 

( ) ( ) ( ) ( )0 0 0 0 0 0, , ( ) ( ) ( )u dx f x u d A t x x B t u u B t d d= + − + − + −  (7) 

where  

0 0 0 0 0 0 0 0 0( , , ) ( , , ) ( , , )
, , .u dT T T

u x d u x d u x d

f f fA B B
x u d
∂ ∂ ∂= = =

∂ ∂ ∂
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Then we have the continuous state space equation as ( ) ( ) ( ) ,u dx A t x B t u B t d= + +     where 

0 0 0, , .x x x u u u d d d= − = − = −   It needs to be discretised for real-time controller as 
follows, 

( 1) ( , ) ( ) ( , ) ( ) ( , ) ( )
( ) ( , ) ( )

u dx k A k t x k B k t u k B k t d k
y k c k t x k

+ = + +
=

  


 (8) 

where ( , ) ( ) ( ),A k t I dTA t x k= +   Bu(k, t) = TBu(t), Bd(k, t) = TBd(t), and dT represents the 
discretisation step size. 

Using the control increment Δu(k), we can rewrite the system equation as 

( 1) ( ) ( ) ( ), ( ) ( )u dξ k Aξ k B u k B d k η k Cξ k+ = + Δ + =    (9) 

where 
( )

( ) ,
( 1)
x k

ξ k
u k
 

=  − 




 
,( , ) ( )

,
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d
d

B k t
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=  
 

  

[ ( , )0].C C k t=  Then the output of ( )Cξ k  is y(k), which contains V, SOC and mf at step 
k. 

For the MPC design, the prediction horizon is set Np, the control horizon is Nc. We set 
Δu(k + i) = 0, for i ∈ [Nc + 1, …, Np]. Taking the state variable ξ(k) at k as the initial 
condition, the state in the prediction horizon can be obtained as equation (10). 

( )Y ψξ k U D= + ΘΔ + Ξ  (10) 
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To obtain the optimal control, we define the cost function J as shown in equation (11), 
including the error between the actual output and the reference output value within the 
prediction horizon, control increment and control magnitude within the control horizon. 
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1 1
2 2 2

1 1 1
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p c cN N N
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J η k i η k i u k i u k i

Y Y Q Y Y U R U U SU
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= = =

= + − + + Δ + + +

= − − + Δ Δ +

    (11) 

where Q, R and S are weights of η(k), ∆u(k) and u(k), respectively. Here, the reference 
output ηref contains reference velocity Vref, initial value of battery SOC and ideal fuel 
consumption reffm  as 0 g/s, i.e., ηref = [Vref, SOCref, reffm ]T. 

Here, we define the error ε ≡ ψξ(k) + ΞD – Yref. With this, equation (11) can be 
rewritten as the standard form of quadratic programming shown in equation (12). 

2T TJ U H U f U ε Qε= Δ Δ + Δ +  (12) 

where H = ΘTQΘ + R + LTSL, and f = εTQΘ + LTSu(k – 1). 
For the optimisation problem, the following constraints need to be satisfied, including 

that of control magnitudes and system outputs. Note that more detailed actuator limits 
and control objectives, e.g., emission, can also be directly included in the LTV-MPC 
design process. However, due to the system complexities, especially in the distributed 
controller functions with multiple considerations on fuel economy, emission, NVH, etc. 
to keep the problem tractable it is reasonable to focus only the fuel economy in the design 
of LTV-MPC, while the other considerations can be further handled in practical 
calibrations. 

0 180 N m
260 N m 260 N m

0.3 0.7
0 5,000 g/s

0 40 m/s

eng

mot

f

T
T

SOC
m

V

≤ ≤ ⋅
− ⋅ ≤ ≤ ⋅ ≤ ≤
 ≤ ≤

≤ ≤

 (13) 

This optimisation problem can be well solved through quadratic programming, and then 
the optimal control variable at time k can be obtained and applied to get the optimal 
torque distribution. 

3.2 Transmission ratio optimisation 

To optimise the transmission ratio, the torque distribution sequence obtained in the upper 
LTV-MPC is introduced into the transmission ratio optimisation module as a measurable 
disturbance. With the input changing to transmission ratio rgear(i), the nonlinear model in 
equation (6) can be written as follows. 

( )
( )

, ,
, ,

r d r

r d r

x f x u d
y g x u d

 =
 =


 (14) 

where the state variable and output are the same as that in equation (6), the input  
ud = rgear(i), and the disturbance dr = [Teng, Tmot, Fr]T. 
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Obviously, it is difficult to directly handle the transmission ratio optimisation 
problem since there exist both discrete and continuous variables. Therefore, 
convexification processing is adopted to deal with nonlinear equation (14) containing 
discrete variables. By taking the transmission ratio rgear(j) of each gear j as a constant and 
introducing corresponding Boolean δj ∈ {0, 1} as input, the convex model can be 
obtained as follows. 

( )

( )

7

1

7

1

( 1) ( ), ( ), ( )

( 1) ( ), ( ), ( )

j r gear r
j

j r gear r
j

x k δ f x k r j d k

y k δ g x k r j d k

=

=


+ =



 + =








 (15) 

According to the state, control input and measurable disturbance at time k, the state and 
output at each time step within the prediction horizon can be computed iteratively via 
equation (15). The transmission ratio optimisation problem here can be solved through 
HMPC, which is similar to that in Pang et al. (2001). With the control input in  
equation (15) being δj, here the corresponding cost function is 

1
2 2

1 1

( ) ( )
p c

tt

N N

t ref k i RQ
i i

J y k i y k i δ
−

+
= =

= + − + +   (16) 

where yref is the same reference output as ηref in equation (11). Qt and Rt are the weights 
of output and input, respectively. 

The constraints of gear selection and actuation limits should be considered, as in 
equation (17). Specifically, when changing gear from m to n at time k + i, the speed and 
torque of engine/motor should be within its maximum and minimum limits. Then, this 
formulated HMPC problem can be solved via MIQP. 

7

1
min max

0/ /
min max

// /

1

( )
( ) ( ) ( ) ( )

j
j

w k i gear weng mot eng mot

gear eng mot gear geareng mot eng mot

δ

R ω v i r j R ω
T r n T m r m T r n

=

+


=




≤ ≤
 ≤ ≤


 (17) 

The framework of the proposed bi-level controller is schemed in Figure 3, where the 
upper level optimises the torque distribution and the lower level optimises the 
transmission ratio. /

k
eng motT  and k

gi  represent the optimised sequence of engine/motor 

torque and transmission ratio, respectively, in which k
gi  contains Nc gear ratio rgear(i),  

i = 1, 2, …, 7. At the first optimisation step, the LTV-MPC calculates the optimal engine 
and motor torque sequence 1

/eng motT  based on the same transmission ratio in the prediction 
horizon Np, which is rgear(1). With the optimised engine and motor torque sequence, the 
lower level optimises corresponding transmission ratio sequence via MIQP. To this end, 
the first element of the engine and motor torque and transmission ratio sequence is 
deployed to the bottom controller of the HEV. At each subsequent optimisation step k, 
the upper level optimises the torque distribution in the prediction horizon based on the 
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last step’s optimised transmission ratio sequence 1.k
g

−i  Meanwhile, the optimised torque 
distribution is introduced into the lower level for the optimised transmission ratio 
sequence k

gi  at this step k. Then the first element of the torque and transmission ratio 
sequence, that is / (1)k

eng motT  and (1),k
gi  will be deployed so on and on. 

Figure 3 The framework of the bi-level controller 

 

4 Simulation 

The proposed bi-HMPC controller is first validated through simulations. A  
proportional-integral-differentiator-based driver model is used to regulate the vehicle 
speed as close as to the target speed vref specified in the driving cycle. According to the 
speed error e, the accelerator/brake pedal opening can be calculated as 

P I D
deK e K edt K
dt

 = + + ⋅ 
 α  (18) 

where α is the accelerator/brake pedal opening, and KP, KI and KD are the proportional, 
integral and differential gains, respectively. 

Simulation results in UDDS driving cycle are presented in Figure 4. It shows that the 
simulated velocity Vsim can follow Vref closely, while battery SOC fluctuates slightly 
around the reference value SOCref = 0.48. On the other hand, it can be found from  
Figure 4(b) that the vehicle is driven by the motor only when accelerating from rest. Only 
after the vehicle has started, the engine starts to work and adjusts its operating point via 
motor torque. By optimising the gear ratio while allowing the engine to operate in a  
high-efficiency region, the proposed bi-HMPC is able to improve HEV fuel economy to 
4.45 L/100 km in UDDS. 
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Furthermore, the fuel consumption results in various driving cycles are compared in 
Table 2. With the energy management strategy of ECMS (Pisu and Rizzoni, 2005), the 
studied HEV’s fuel consumption in NEDC, UDDS, LA92 and WLTC are 5.07 L/100 km, 
4.62 L/100 km, 5.48 L/100 km and 5.65 L/100 km, respectively. However, when 
adopting the proposed bi-HMPC, the fuel consumption can be further improved by 5.5%, 
3.7%, 12.2% and 7.8%, respectively. As for the computational efficiency of the proposed 
bi-HMPC, each step in the simulation takes 0.415 s on average when setting dT = 1 s,  
Nc = Np = 15, which is less than half of the sampling time. 
Table 3 Simulation results of bi-HMPC and ECMS in different driving cycles (Nc = Np = 15) 

Driving cycle Strategy L/100 km Improvement 
NEDC Bi-HMPC 4.79 ↓5.5% 

ECMS 5.07 -- 
LA92 Bi-HMPC 4.81 ↓12.2% 

ECMS 5.48 -- 
UDDS Bi-HMPC 4.45 ↓3.7% 

ECMS 4.62 -- 
WLTC Bi-HMPC 5.21 ↓7.8% 

ECMS 5.65 -- 

Figure 4 Bi-level HMPC simulation results (see online version for colours) 

 
(a) 

 
(b) 

It can be drawn from the simulations that the proposed bi-HMPC-based energy 
management strategy can improve fuel economy of HEV by properly distributing the 
engine/motor torque and optimising the gear ratio. With the rapid development of the 
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computing performance of on-board controllers, the proposed bi-HMPC has the potential 
of real-vehicle application to further improve fuel economy of HEVs. 

5 Real vehicle validation of LTV-MPC 

To further validate the practical performance of bi-HMPC, we implement the proposed 
LTV-MPC algorithm in this P2 structure HEV. However, since the transmission of the 
studied HEV is provided by another supplier and can only be controlled separately by its 
own controller, it is challenging to implement both optimisation of torque distribution 
and transmission ratio in this vehicle. Therefore, here only the upper level  
LTV-MPC-based torque optimisation module is validated in the real vehicle. 

The real-time test of algorithm implementation is schemed in Figure 5, which 
includes ETK, ETAS 590, adaptor, dSPACE MicroAutoBox, host PC, and 12 V power 
supply. Among them, MicroAutoBox is used for the real-time calculation of LTV-MPC 
algorithm; ETK is the prototype vehicle controller; ETAS 950 can modify the control 
parameters of the vehicle controller through the host PC; and adaptor facilitates 
debugging via CAN ports. ETAS bypasses the original algorithm in ETK, so that ETK 
only receives the control command calculated in MicroAutoBox, which runs the  
LTV-MPC algorithm based on feedback vehicle information via adaptor. A chassis 
dynamometer based on the NEDC driving cycle is adopted. 

The vehicle is first tested in passive mode, with the final fuel consumption result as 
5.4 L/100 km (NEDC). Note that the original hybrid energy management algorithm is 
developed via RB, and the development team has taken several months or even years of 
work, including more than ten rounds of bench tests, before arriving this performance. In 
this research, one main objective is to show whether the model-based LTV-MPC 
approach can help accelerate the HEV algorithm development process. 

Figure 5 Schematic diagram of algorithm tests (see online version for colours) 

 

5.1 Preliminary test 

To check whether the top-down design process works or not, we run the preliminary test 
without any adjustment. Fuel consumption and emission results are shown in Table 4, 
where the corresponding mass of emissions include carbon dioxide CO2, carbon 
monoxide CO, hydrocarbon HC, non-methane hydrocarbon NMHC and nitrogen oxides 
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NOx. The vehicle fuel consumption reaches 7.03 L/100 km and CO2 emissions is up to 
163.48 g/km. Compared to the original powertrain performances, both the fuel economy 
and emission are far from acceptable, indicating that the empirical setting of MPC in 
Subsection 3.1 is not satisfactory. 

Figure 6 presents the engine and motor torques during the test, including the required 
torques by LTV-MPC (‘Tmotor/eng require’) and the realised torques by the engine or motor 
controllers (‘Tmotor/eng actual’). It shows that for both engine and motor, there are certain 
differences between the required and the actual torque, indicating that the corresponding 
controllers, especially the engine controller, cannot respond well the fast torque demand. 
Meanwhile, the engine torque varies too much and its maximum torque exceeds 150 Nm. 
Figure 7 further shows that the engine starts and stops frequently (17 times) under the 
whole cycle conditions. To summarise, it can be speculated that the main reasons for high 
fuel consumption include: 

1 frequent start and stop of the engine 

2 the engine torque fluctuates up and down 

3 the peak of engine torque is too high. 

Figure 6 Engine/motor torques in preliminary bench testing (see online version for colours) 

  
(a)     (b) 

Figure 7 Engine start-stop in preliminary bench testing (see online version for colours) 

 

5.2 Algorithm improvements 

Based on above speculation, for improvements we set the engine to keep off when 
vehicle speed is lower than 16 km/h and the engine needs to be kept on for at least 30 s 
after starting, which is implemented outside the LTV-MPC with a rule-based controller. 
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Besides, in the LTV-MPC cost function (11), the weight of the engine torque increment is 
increased to ensure the torque changes more smoothly. 

The improved algorithm is further examined in a 2nd-round drum test, with results 
shown in Table 4. The vehicle fuel consumption was 6.41 L/100 km, which has already 
been 8.8% smaller than that in the preliminary test. However, the pollutant emissions 
seem deteriorated to a certain extent except for CO2. 

Through the comparison and analysis of the two results through Figures 8 and 9, it 
can be seen that after the control parameters modification, the engine has fewer  
start-stops and smaller torque fluctuations, which greatly improves the fuel economy. 
However, there is still a problem of excessive torque when the engine is being activated 
ON. 

Figure 8 Comparison of engine torque in two tests (see online version for colours) 

 

Figure 9 Comparison of motor torque in two tests (see online version for colours) 

 

To limit the initial engine torque when it is switched ON, we further restrict the engine 
starting torque via the rule-based controller. In addition, the weight of the engine torque 
increment in the cost function (11) is further increased to restrict the fluctuation of engine 
torque. For the LTV-MPC controller, the prediction, control horizon and discretisation 
step are set to Np = 20, Nc = 10 and dT = 0.2 s, respectively. Then the 3rd-round test 
results are shown in Table 4. The vehicle fuel consumption is now 6.20 L/100 km, which 
is a reduction of 3.3% compared to the 2nd-round test. CO2 emission is reduced to  
144.49 g/km, and NOx is also reduced to 0.018 g/km. To justify the comparability of 
these three tests, Figure 10 presents the corresponding battery SOC curves. Though the 
initial SOC of three experiments are different, the SOC changes ∆SOC are very small 
(0.007, 0.012, and 0.005, respectively). 
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Table 4 The overall bench testing results under NEDC driving cycle 

Test 
round 

Fuel consumption 
(L/100 km) 

CO2 
(g/km) 

CO 
(g/km) 

HC 
(g/km) 

NMHC 
(g/km) 

NOx 
(g/km) 

NMHC + 
NOx (g/km) 

1st 7.03 163.48 2.248 0.083 0.059 0.029 0.088 
2nd 6.41 148.15 2.456 0.203 0.177 0.034 0.211 
3rd 6.20 144.49 1.797 0.109 0.089 0.018 0.106 

Figure 10 Battery SOC in three tests (see online version for colours) 

  

Figure 11 Comparison of emissions in three experiments (see online version for colours) 

  

By applying LTV-MPC algorithm, the vehicle fuel consumption has been reduced to  
6.2 L/100 km after only three round adjustments. Moreover, reduction of main emissions 
can also be seen from the comparison in Figure 11. With the linearised system model of 
energy management problem, the objective function can be well solved via quadratic 
programming while meeting various constraints, e.g., actuator limit, state variable 
boundary. Comparing with the original nonlinear MPC formulation, the LTV-MPC can 
significantly reduce computational burden and is possible for real implementation. Note 
that this is achieved with no direct control over transmission shifting strategy, that is, the 
lower level of transmission optimisation is not applied in real vehicle experiment. It is 
possible to achieve better results of fuel economy if the shifting can also be optimised 
and controlled. The efficient process of performance improvements by combining the 
expert rules shows that the optimisation framework of LTV-MPC can guarantee 
straightforward and effective development of HEV energy management algorithm. 
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6 Conclusions 

We propose a bi-HMPC-based energy management algorithm for a P2 HEV, whose 
upper level distributes the optimal engine/motor torque via LTV-MPC and lower level 
optimises the gear ratio based on HMPC. Simulation results validate that the proposed  
bi-HMPC improves HEV’s fuel consumption over ECMS by 5.5%, 3.7%, 12.2% and 
7.8% under NEDC, UDDS, LA92 and WLTC driving cycles, respectively. The further 
validation of the upper LTV-MPC is carried out in the real vehicle experiments, showing 
that this framework is effective in handling fuel economy improvements, with fuel 
consumption reduced from 7.05 L/100 km to 6.2 L/100 km within only three drum tests. 
With the improvement of computing efficiency, the LTV-MPC algorithm has the 
potential for real-vehicle applications. 

In this research, one main objective is to show how the model-based approach can 
help accelerate the HEV algorithm development process. The hybrid energy management 
algorithm in the original vehicle is developed via RB, which have taken several months 
or even years of work before arriving the final fuel consumption result of 5.4 L/100 km 
(NEDC). However, with only three rounds of tuning, the model-based LTV-MPC can 
reduce the fuel consumption from 7.03 L, to 6.41 L and finally to 6.2 L/100 km, showing 
it has a great potential to accelerate the hybrid vehicle algorithm development. This 
framework can be also flexibly combined with expert rules for further considerations of 
emission and NVH, etc. 

Note that due to limits of funding the precise modelling of engine, motor, battery and 
transmission is unfortunately impossible at the current stage of research. Considering the 
system complexities of hybrid powertrain and vehicle, to keep the problem still tractable 
we can only focus on fuel economy in the optimisation. For OEM implementations, the 
detailed modelling and even the lower-level control (e.g., transmission gear ratio) are all 
possible, in which case more promising performances of the LTV-MPC framework can 
be expected. 
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