
 
International Journal of Information and Computer
Security
 
ISSN online: 1744-1773 - ISSN print: 1744-1765
https://www.inderscience.com/ijics

 
AI-driven approach for robust real-time detection of zero-day
phishing websites
 
Thomas Nagunwa
 
DOI: 10.1504/IJICS.2024.10061314
 
Article History:
Received: 23 March 2023
Last revised: 03 September 2023
Accepted: 08 September 2023
Published online: 19 February 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijics
https://dx.doi.org/10.1504/IJICS.2024.10061314
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   Int. J. Information and Computer Security, Vol. 23, No. 1, 2024 79    
 

   Copyright © 2024 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

AI-driven approach for robust real-time detection of 
zero-day phishing websites 

Thomas Nagunwa 
Department of Computer Science, 
Institute of Finance Management, 
Dar Es Salaam, Tanzania 
Email: tom.nag@gmail.com 

Abstract: Existing solutions for detecting phishing websites mainly depend on 
a blacklist approach, which has proven ineffective in detecting zero-day 
phishing websites in real-time. This study proposes a machine learning (ML) 
approach for highly accurate real-time detection of zero-day phishing websites 
using highly diversified features. The prediction performance of the features is 
evaluated and compared using 12 traditional ML and three deep learning (DL) 
algorithms. The results have shown that with CAT boost algorithm, the features 
are able to achieve the best performance with an accuracy of 99.02%, false 
positive rate (FPR) of 0.90% and false negative rate (FNR) of 1.03%. Feature 
analysis used to understand the features’ prediction importance, data 
distributions and performance contributions are also presented. The prediction 
runtime of the proposed model is also measured to assess whether the model 
can be deployed for real-time detection. 

Keywords: phishing; phishing web page; zero-day phishing web page; 
machine learning; deep learning. 
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1 Introduction 

The rapid growth of global internet usage in recent years has led to a boom in online 
services in domains such as e-commerce, social networking and e-government. This has 
resulted in a surge in the volume of transactions of sensitive information such as personal 
data on the internet. Online availability of such data has lured attackers to devise a 
cyberattack mechanism, known as phishing, to enable them to steal the data and use it to 
impersonate victims for undertaking malicious activities. Today, phishing is one of the 
most important and effective types of cyberattacks and has caused massive economic, 
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political and social impacts on individuals, organisations and governments (Alkhalil  
et al., 2021; Allianz, n.d.; Ball, 2017; Brattberg and Maurer, 2018; CNN, 2020; FBI, 
2018; Gendre, 2015, 2019; Greenberg, 2017; IBM Security, 2019; Internet Society, 2016; 
Koulopoulos, 2017; Lee and Rotoloni, 2016; Pompon, 2019; Ponemon Institute, 2015; 
Retruster, n.d.; Rodríguez, 2019; SecureWorks, 2019; Sophos, 2019; Verizon, 2018). 

The execution of a successful phishing attack involves two main stages namely the 
distribution/delivery of the attack to the targeted users and the capturing of victims’ data. 
Attackers use various techniques such as phishing spams to distribute the attacks to their 
targets. In the second stage, the use of phishing websites remains the main tactic used by 
attackers to capture data (PhishLabs, 2020). A phishing website is a replica of a 
legitimate website that prompts users for similar personal data to that requested by the 
legitimate website. Today, with the help of highly sophisticated and automated phishing 
toolkits, which are widely available at a low cost, high-quality phishing websites are 
being developed even by technically unskilled attackers. This has resulted in a rise in the 
number of newly undiscovered (zero-day) phishing websites created on a daily basis 
(Damiani, 2020; Sophos, 2019). 

There are a number of developed solutions for detecting phishing websites at the time 
users are exposed to access them. However, they mainly rely on a blacklist approach, 
which has been demonstrated to be inefficient in detecting zero-day phishing websites in 
real-time (Barraclough et al., 2013; Wenyin et al., 2012). Researchers have proposed 
various approaches including those based on visual similarity and rules. The former, 
however, offer limited protection, that is, they only detect phishing websites whose 
legitimate web pages are recorded in the database. Meanwhile, most rule-based solutions 
are limited with low or moderate performances and/or low diversity of features used, 
increasing their susceptibility to detection evasions. Due to these limitations, the number 
of zero-day phishing websites and their successful attacks has been steadily growing 
globally over the years. For instance, APWG (2023) reported that the number of phishing 
attacks has grown by more than 150% per year between 2019 and 2022. They also 
observed that the number of new unique phishing websites per month reached the highest 
recorded number of 459,139 in December 2022, a sharp rise from 69,533 recorded by 
APWG (2016) in the same month in 2016. On the other hand, the Federal Bureau of 
Investigations (FBI, 2021) reported that the number of complaints they received from 
phishing victims rose from 25,344 in 2017 to 323,972 in 2021. 

Given the prevalence and significance of zero-day phishing websites, an ideal 
solution for effective and efficient detection of the websites should have the following 
design characteristics: 

• It must not rely on lists of known or suspected phishing websites compiled from 
human or software-generated reports. 

• It preferably uses machine learning (ML) due to its flexibility in updating the 
prediction rules through data re-collection and re-training. This is useful in 
maintaining the optimal detection performance when phishing website techniques 
change over time. 

• It must achieve high prediction accuracy and low misclassification rates, ideally, 
100% and 0% respectively. 
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• It must perform detection in real-time, i.e., the additional time taken to determine 
whether a URL will take the user to a phishing web page or not must not degrade the 
user’s overall web browsing experience. 

• It should use novel prediction features. This is because the attackers tend to learn 
prediction features used by existing detection solutions and develop mechanisms to 
circumvent the solutions. The use of novel features will enable the solution to be 
ahead of attackers. 

• It should use highly diversified prediction features (features selected from a wide 
variety of categories) to make the solutions more resistant to detection evasion. The 
attackers would need to develop at least one detection evasion technique for each 
feature category to have any chance of eluding the solution, which is likely to be a 
difficult and time-consuming task for most attackers. 

This study, therefore, proposes and evaluates a new set of largely diversified features for 
highly accurate real-time prediction of zero-day phishing web pages using an ML 
approach. To identify the best ML algorithm for the task, various traditional and deep 
learning (DL) ML algorithms are used to evaluate the features and their results are 
compared using several standard ML performance metrics to identify the best performing 
algorithm. 

This paper is arranged into seven sections. Section 2 describes works related to this 
study. In Section 3, a background to structural characteristics of phishing web pages is 
provided. Section 4 describes the proposed prediction features and the design of our 
prediction model. In Section 5, we describe the experiments for developing and 
evaluating the model and present their results along with feature analysis. Section 6 
compares our work with other related works and discusses the applicability and 
limitations of our solution. Section 7 concludes the paper by revisiting our results and 
contributions. 

2 Related work 

Current approaches for detecting phishing web pages can be grouped into three main 
categories. These are blacklists, visual similarity and rule-based techniques. 

2.1 Blacklist-based approach 

In this category, several web browser filters and anti-malware suites are available to 
protect users from accessing phishing web pages. The filters are incorporated in web 
browsers as a built-in or installable component (also known as a plug-in). The  
anti-malware suites, on the other hand, are software that can either be installed in a user’s 
machines as standalone applications or as clients of cloud-based applications. The suites 
scan the websites as they are being accessed by users to detect malicious behaviours. 
Most filters and suites are based on a URL blacklist approach. Google’s Safe Browsing, 
for instance, uses a database of hashed URLs of malicious web pages, including phishing 
ones, to protect users of Chrome, Firefox, Safari and Opera web browsers. It warns users 
when they access phishing web pages whose URLs are in the list (Google, n.d.-a, n.d.-b; 
Somogyi and Miller, 2017; Geotrust, n.d.). Examples of plug-ins using blacklists are 
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TrustWatch, Bitdefender TrafficLight and PhishTank SiteChecker (EC Council, 2017; 
Geotrust, n.d.; Kent, 2013) whereas anti-malware suites include Trend Micro (n.d.), 
ESET (2017) and Kaspersky (2015). 

The blacklist approach, however, is less effective in instantly detecting zero-day 
phishing webpages. This is because blacklists mainly depend on users or experts 
reporting phishing webpages before their administrators verifying them prior to be 
recorded in the database, the process which takes time leading to delays in updating the 
lists. By the time the lists are updated, the reported phishing websites are likely to have 
been active for several hours, days or weeks. The ineffectiveness was empirically 
demonstrated by various studies including Wenyin et al. (2012), Barraclough et al. (2013) 
and AV-Comparatives (2016). 

2.2 Visual similarity approach 

This approach compares images of suspicious web pages or in combination with web 
page structure and contents often against those of pre-collected legitimate web pages to 
detect phishing web pages based on the computed visual similarity scores. Hara et al. 
(2009) proposed a technique in which a domain name and image of a web page 
(screenshot) are compared against a database of domain names and images of  
pre-collected legitimate and phishing web pages. A new web page is flagged as a 
phishing web page if its visual similarity score against one of the web pages in the 
database is higher than the pre-calculated threshold and its domain name is not matching 
with any of those in the database. Phishing web pages were used in the database to help 
detecting other phishing web pages targeting the same legitimate web page as they are 
likely to be similar in their visual looks. The technique achieved an accuracy of 80% and 
FPR of 17.5%. Other works based on visual based features approach include Medvet  
et al. (2008), Chen et al. (2009) and Kumar and Kumar (2015). The disadvantage of this 
approach, as observed by Medvet et al. (2008), is that the extraction of visual related 
features is computationally expensive, that is, it consumes more computational resources 
and introduces significant detection overheads which may not be suitable for real-time 
detection. 

2.3 Rule-based approach 

This is one of the most popular approaches in research works because of its capability to 
instantly predict both known and unknown phishing web pages with good performances. 
This category uses rules that are set manually or determined automatically by ML 
algorithms to distinguish phishing web pages from legitimate ones. Xiang et al. (2011), 
for instance, developed a CANTINA+ system, based on a Bayesian network classifier, to 
detect phishing web pages. The classifier used 15 features related to web page contents, 
WHOIS domain records, URL structure and search engine reputation to detect phishing 
web pages to achieve accuracy, FPR and F1 scores of 92.25%, 1.375% and 0.95 
respectively. Shirazi et al.’s (2017) work compared several DL algorithms and SVMs to 
detect phishing web pages. Using 30 features related to URL structure, web page 
structure, WHOIS domain records, Alexa’s web page reputation and Google’s search 
engine reputation, one of the DL algorithms achieved the best results with an area under 
curve (AUC) ROC of 0.897, true negative rate (TNR) of 90.27%, and true positive rate 
(TPR) of 89.33%. Jain and Gupta’s (2018) random forest classifier detected phishing web 
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pages with an accuracy of 99.09% and an FPR of 1.25%. A total of 19 features based on 
URL structure, and web page structure and contents were used by the classifier. A 
Random Forest classifier proposed by Sahingoz et al. (2019) used vector representations 
of URL characters as well as the website’s ranking in the Alexa top websites list to detect 
phishing web pages. An accuracy, precision, sensitivity and f-measure of 97.97%, 0.97, 
0.99 and 0.98 respectively were achieved by the classifier. Li et al. (2019) proposed a 
classifier composed of a stack of boosting algorithms (XGBoost and LightGBM) to 
detect phishing web pages. The classifiers used 20 features based on URL structure, and 
web page structure and contents to yield an accuracy of 97.3%, FPR of 4.46% and FNR 
of 1.61%. 

A study by Elsadig et al. (2022) developed a deep convolutional neural network 
(CNN) to distinguish phishing URLs from legitimate ones from a dataset of 549,346 
URLs. First, they extracted a set of 12 most significant features from the URLs’ 
characters using a bidirectional encoder representations from transformers (BERT)  
pre-trained model and used the features to train the CNN model. The model achieved the 
optimal accuracy of 96.66%, precision of 96.66% and f1 score of 93.63%. Liu et al. 
(2022) proposed a DL-based phishing detection model that utilised semantic analysis of 
various text-based components of a webpage including URL, title, and HTML body and 
invisible texts. The extracted texts of each component, from a dataset of 5,393 web pages, 
were independently converted into vector representations and passed through multiple 
convolution layers of each component’s CNN model for feature extraction. Then their 
outputs were fused together in various combinations for the classification task by a single 
fully connected neural network layer. The model’s output was able to achieve the best 
performance of FPR of 0.0047, F1 score of 0.9830 and AUC of 0.9993 with a 
combination of URL, title, and body and invisible text. Alshingiti et al.’s (2023) work 
evaluated a set of 80 URL character-based features of a dataset of 20,000 phishing and 
benign URLs using three DL algorithms namely CNN, LSTM and LSTM-CNN to detect 
phishing URLs. First, they applied a SelectKBest feature selection method to identify the 
most predictive features (30) and compared the performances of the features with the 
three algorithms. The results showed that CNN outperformed the other algorithms by 
obtaining the best accuracy of 99.20%. 

Despite being the most successful approach compared to others, the proposed 
solutions have several limitations. One, some of these, for instance, Xiang et al. (2011), 
Shirazi et al. (2017) and Elsadig et al. (2022), have achieved moderate prediction 
performances as indicated earlier. Two, most of these approaches used sets of features 
with low diversity. Examples of this are Jain and Gupta (2018), Sahingoz et al. (2019) 
and Li et al. (2019) which used only two different categories of features (URL structure, 
and web page structure and contents) while Elsadig et al. (2022) and Alshingiti et al. 
(2023) used only one (URL structure). With a small set of feature categories, attackers 
can learn most or all the features belonging to each category and require one or a few 
evasion mechanisms to bypass each category, thus the entire solution. Three, some of 
these solutions avoided using featured based on third party services for performance 
reasons. Instead, they used only features derived from URL and/or web page structures. 
The later, however, can easily be emulated by phishers by ensuring that the phishing 
webpages and their URLs are as similar as their targets, thus neutralising the features’ 
prediction power. We argue that it is extremely difficult for phishers to manipulate third 
party services because they are highly secured. To manipulate the services, phishers 
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would require high technical skills, longer time and other resources that very few 
attackers are likely to possess or willing to invest in. 

3 Structural characteristics of data capturing web pages 

This section describes the structure of web pages that collect personal data from users in 
order to provide a background of our proposed features. 

3.1 Anatomy of a web page collecting personal data 

A web page is a hypertext document, usually in a hypertext markup language (HTML) 
format, that is viewed remotely through a web browser. We term a web page that prompts 
for and collects personal data a personal data capturing (PDC) web page. Each web page 
has two main parts: uniform resource locator (URL) and the HTML file describing its 
structure and contents. 

3.1.1 URL 
URL, also referred to as a web page address, is a unique string identifying a location of a 
web page file on the internet. A URL has three main components namely the protocol, 
hostname and path. For instance, for a URL https://cs.berkeley.edu/resources/faculty-
staff, https is a protocol, cs.berkeley.edu is the name of the host (hostname) and 
resources/faculty-staff is a path. Hostnames have a hierarchical structure: edu is a  
top-level domain used by educational organisations, berkeley is a sub-domain of edu 
owned by the University of Berkeley, and cs is a sub-domain of berkeley.edu issued to 
the Berkeley Computer Science Department. The hostname denotes a website (host), and 
the path gives the location of the web page in the file system of the website. To download 
a web page from its server to a client machine (e.g., in order to display it in a browser), a 
communication protocol known as hypertext transfer protocol (HTTP) or its encrypted 
version HTTP secure (HTTPS) are normally used. These two are indicated as http and 
https in the URL respectively. To use HTTPS, the owner of the website must acquire a 
transport layer security (TLS – formerly SSL) certificate for the domain. There are three 
main types of TLS certificates offered namely extended validation (EV), organisation 
validation (OV) and domain validation (DV) (Acmetek, n.d.; Global Sign, n.d.; Kavya, 
2020; Robertckl, 2014; Warburton and Pompon, 2019). Not only is the certificate useful 
for encrypting the traffic but it is also used to authenticate hosts of websites. 

3.1.2 Web page structure and contents 
The components of an HTML web page structure are built around a basic element known 
as a tag. Examples of tags are <title>…. </title>, <meta….>, <link….> and <script>…. 
</scripts>. The HTML web page structure is made up of two sections; head and body. 
The head section may contain components including title, metadata, links and scripts. 
Links provide addresses of other web pages or objects, such as images and stylesheets, 
connected to the web page. There are three types of links namely links to other web 
pages’ objects, links to various sections of the same web page and void links (those with 
no URL assigned) (Ghobril, 2015; Kurtus, 2014; Lakshmi and Vijaya, 2012; Omg, 2009). 
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Some web pages are created in multiple versions for various reasons such as identifying 
one consistent web page for search engine results and translation of a web page in 
multiple languages. To identify the related versions, canonical and alternate links are 
included in the head section with URLs of all the related web pages (Eubanks, 2012; 
Google, 2017; Meier, 2014; Microformats, 2016; Valk, 2016). 

The main component of the body section of the PDC web page is the mechanism for 
capturing and submitting user data. The web page can use an HTML form or a  
script-based dialogue window for the task. The HTML form is a structural component of 
a web page for collecting input data from the user and sending it to a specified URL for 
processing. The form is delimited by a tag <form>… </form> and often contains various 
input fields, each defined with an input tag <input> and an attribute type for specifying 
the type of data to be collected. Common input types are text, which is a field accepting 
any text information, and password, which is a field specifically for password entries 
(W3Schools, n.d.-b). Others include email for email addresses, tel for telephone numbers, 
and date for day, month and year entries (W3Schools, n.d.-b). The form uses a URL 
assigned to its tag action to identify the URL to send the collected data to for processing 
tasks, such as saving the data into the database. The data processing web page is also 
known as the form handler. <form action=“/login” method=“post”> is an example of a 
form tag indicating a form handler named login within the same host as the PDC web 
page. 

Script based dialogue windows which also can be used to prompt for personal data 
are often designed using JavaScript or JQuery scripting languages. With JavaScript, the 
window.prompt() command displays a prompting message and captures the inputs 
(Universal Class, n.d.-b; W3Schools, n.d.-c). Alternatively, both JavaScript and JQuery 
can incorporate the HTML form to prompt inputs using input fields (Agarwal, n.d.; 
Universal Class, n.d.-a). 

Not every web page with an HTML form or a dialogue window collects personal 
data. For instance, Google’s search web page collects users’ search keywords. What 
differentiates PDC web pages from others is that they usually contain words or phrases 
that are related to the specific data being collected. These phrases, we refer to them as 
PDC phrases, can be within the form text (W3Schools, n.d.-b), in the label tags 
<label>….</label> (W3Schools, n.d.-a), as default values to value attribute of input tags 
(Broadley, n.d.) or elsewhere in the HTML document. Some of these phrases, for 
instance, login, log in and sign in can also be used as names of a submit button of the 
form. In this case, they are assigned as values to the input type submit. 

3.1.3 Structural characteristics of phishing websites 
Phishing websites tend to imitate the URL, layout and contents of legitimate websites as 
much as possible to lure users and evade detection. The degree of similarity between 
phishing and legitimate websites varies depending on the phisher’s skills in reproducing 
the replica. Phishing websites can be categorised into three types depending on their 
levels of look and feel relative to the legitimate websites they imitate (Zhao et al., 2016). 
These are simple phishing, advanced phishing and extreme phishing websites. Three 
main criteria to describe the categories are summarised in Table 1. Using phishing 
toolkits, which often consist of loaded templates of the targeted legitimate websites, 
phishers can easily produce phishing websites that look closely like legitimate ones by 
performing a few modifications on the structure and contents of the templates. For 
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instance, they have to change the form handler to point to the URL of a host that they will 
use to collect the phished data. Given the popularity of the toolkits among phishers, 
advanced and extreme phishing websites are likely to be the majority of the phishing 
websites created today 
Table 1 Types of phishing websites are categorised based on the three-similarity metrics 

Type of phishing 
websites 

Similarity metrics 

Visual appearance Page depth Supports user 
dynamic interaction 

Simple phishing Somewhat similar One web page with few 
similar links 

No 

Advanced phishing Mostly similar Limited number of pages 
with few similar links 

No 

Extreme phishing Similar in every 
way 

Unlimited number of 
pages with completely 

similar links 

Yes 

Source: Zhao et al. (2016) 

It is however impossible for a phishing web page to use the same URL as that of a 
legitimate web page. This is because the website’s domain name and URL are the unique 
registered information for every website in the internet space. To imitate the original 
URLs or to hide the true identity of their suspicious URLs, phishers use two approaches. 
The first one is to compromise a web server hosting a legitimate website and add a 
phishing web page or website in the folder containing the legitimate website. The 
phishing web page/website, in this case, will be running as web page(s) of the legitimate 
website, thus, using the same domain name registered with the legitimate website but 
with different URL path(s) assigned by the phisher. 

The second approach is to use their registered domain names but make them look like 
the legitimate ones or mask them using other unsuspicious characters. Various techniques 
are used to achieve this. These include the use of legitimate domain names in non-
standard positions in their URLs (Xiang et al., 2011), replacing domain names with 
numerical digits or IP addresses (Xiang et al., 2011), encoding the domains names with 
other string presentation formats (e.g., ASCII characters) (PCHelp, 2002), the addition of 
various obfuscation characters (e.g., ‘-’, ‘_’, ‘=’) (Ma et al., 2009), replacing their 
original URLs with shortened ones (Webroot, 2019) and the use of free domain names 
provided by free web hosting services (PhishLabs, 2020). These practices are not 
commonly associated with legitimate URLs, especially for those of PDC web pages. Due 
to the addition of more characters by some of these techniques, the resulting phishing 
URLs tend to be longer in length than those of legitimate websites. Also, in most 
legitimate websites, the domain names often represent brand names or names of the 
organisations owning the websites. These names usually appear multiple times in the 
contents or structural components of the web pages. Since in this approach the phishers’ 
own domain names are different from the legitimate ones, they are less likely to relate to 
the contents or structural components of the phishing web pages, which are often copies 
of those of legitimate web pages. 

Based on the structural designs of the phishing websites described above, several key 
structural differences between phishing web pages/websites and those of legitimate ones 
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can be noticed. We summarise them in Table 2. These can be useful in determining 
potential features for differentiating the two, thus predicting phishing PDC web pages. 
Table 2 A summary of key structural differences between legitimate and phishing web pages 

Comparison factors Legitimate web 
pages/websites Phishing web pages/websites 

Originality of web page 
structure and contents 

Use their original 
structure and contents 

Copy most of the structural 
components and contents of the 

target legitimate web pages 
including web page links. Few 
links may be modified such as 

that of a form handler. 
Relationship between a 
domain name and the 
brand/organisation name of 
the website 

Domains often relate to 
the brand names 

Domains do not relate to the 
brand names 

Presence of a website’s 
domain name in non-standard 
positions in the URL 

It is not standard practice This is common practice in 
phishing URLs 

Use of numerical digits or IP 
addresses for a domain name 

It is not a common 
practice 

It is a common practice 

Encoding domain names It is not a common 
practice 

It is a common practice 

URL length Often short Often long 
Use of free domains managed 
by free web hosting services 

Those owned by 
established organisations 
are not expected to use 

free domain names 

There is a growing number of 
phishing websites using free 

domain names 

Use of shortened URLs PDC web pages are not 
expected to use shortened 

URLs 

There is a growing trend of 
phishing PDC web page using 

shortened URLs 
Domain name lifespan Most of the established 

organisations are 
expected to have been 
using the domain name 

for a long time 

Phishers often use their registered 
domain for short periods to avoid 

being tracked 

Use of digital (TLS) 
certificates 

Most domain names are 
expected to use digital 
certificates, especially 

EV certificates. 

Most of the domain names still do 
not use the certificates. For those 
using them, OV and DV types are 

the common ones. 
Number of websites sharing a 
host 

Sharing of a host is less 
expected in the majority 

of websites 

Many phishing websites sharing a 
host is a normal practice 

4 Prediction model design 

In this section, we describe how we derived our proposed features for predicting phishing 
PDC web pages. We also describe and illustrate the proposed system architecture of our 
prediction model. 
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4.1 Phishing web page prediction features 

First, we describe how we identified PDC web pages, the web pages that collect users’ 
personal data. As explained previously, not every web page with an HTML form or a 
dialogue window collects personal data. From our observations, PDC web pages usually 
consist of at least one word or phrase (we term as PDC phrase) in their structure and 
contents which is related to the specific personal data being collected. To determine 
common PDC phrases used by PDC web pages, we investigated 100 samples of phishing 
and legitimate web pages capturing the data from which we obtained a list of 43 PDC 
phrases (indicated in Table 3). The importance of differentiating PDC from non-PDC 
web pages is that we avoid predicting web pages which do not pose any phishing threat. 
This will avoid degrading of user’s experience when accessing the non-PDC web pages 
and the potential false positives on these web pages which will prevent users from 
accessing them, causing significant implications to users and websites’ owners (e.g., 
denial of services and losses of revenues). The list, however, is not exhaustive as there 
could be other PDC web pages which capture personal data not related to the PDC 
phrases in the list. In this case, such web pages will be regarded by our model as  
non-PDC web pages and thus will not be considered for the prediction analysis. To 
expand the list, a larger set of PDC web pages can be used to extract the phrases. For 
instance, one can collect a comprehensive set of known phishing PDC web pages from 
various phishing blacklists and algorithmically extract label and default values of all 
input fields, and the name attribute of the submit button in each web page to create the 
list. 
Table 3 Common PDC phrases used in PDC web pages 

Username Login Forgotten your 
password 

Customer 
number 

Log in with 
Facebook 

User Password Reset password Membership 
number 

Log in with 
Twitter 

Email PIN Debit card 
number 

Billing 
information 

Log in with 
Google 

Account Secret key Credit card 
number 

Billing address Sign in with 
Facebook 

Account number Security code Card number Cardholder Sign in with 
Twitter 

ID Security key Account number Expiry date Sign in with 
Google 

Sign in Security number Security number Date of birth Create an 
account 

Sign up Forgot password Passcode Birth date  
Log in Forgot Remember me Phone  
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Table 4 Summary of the proposed features 
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Table 4 Summary of the proposed features (continued) 
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Table 4 Summary of the proposed features (continued) 
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Based on the differences in the structural characteristics between phishing and legitimate 
websites described in section 3, we derived various potential features for distinguishing 
phishing PDC web pages from legitimate ones. We also studied features used by previous 
works addressing the same problem and identified those which can be extended or 
improved, based on the mentioned characteristics, to add to our set of features. In 
addition, we adopted some of the features, in our proposed set of potential features, those 
which were used and defined as strong predictors in several works. To identify features 
which are strongly exhibited by the current phishing PDC web pages and thus are likely 
to be useful predictors, we investigated them in the same 100 samples of phishing and 
legitimate PDC web pages mentioned above. This was done by algorithmically analysing 
the occurrence patterns of values of each feature across the two sets of web pages. The 
features whose patterns of values were more consistent in one set compared to the other 
were considered to be potential predictors. For example, we counted the number of URLs 
from each set that contained the character @ in their strings (feature #10 in Table 3). We 
found that the character appeared in almost 18% of all the phishing URLs while none 
were in the legitimate URLs. From this investigation, 35 of such features were identified. 
We categorise the features into five groups namely web page structure and contents, URL 
structure, WHOIS records, TLS certificate and web page reputation. The categorisation is 
based on the similarity of sources of the features. For instance, all features which were 
derived from the character composition of a URL string are grouped as URL structure. Of 
the 35 features, 24 are new ones introduced by this study and 11 features are adopted 
from previous related works. In this section, we describe some of the features which were 
observed to be among the best features for this problem. Table 4 below summarises all 
the proposed features along with their descriptions. 

4.2 System architecture of the prediction model 

Training process 
Our prediction model based on the proposed features earlier is built using the following 
six-step process (illustrated in Figure 1 as steps 1 to 6): 

Step 1 Collection of known phishing and legitimate PDC web pages 

A set of each type of web pages is collected from its respective database and 
then labelled as phishing or legitimate accordingly. In this study, we collected 
active phishing web pages from a phishing blacklist while legitimate web pages 
were collected from a ranked list of the most visited websites. 

Step 2 PDC web page filtering 

The model is aimed at analysing only PDC web pages. This module, therefore, 
determines if a web page consists of an HTML form or a JavaScript pop-up 
window and at least one of the PDC phrases as described in Section 4.1. 

Step 3 URL redirections check 

Some of the web pages are designed to perform one or more URL redirections 
before landing to their actual URLs. We need to obtain the final redirected URL 
of each web page in order to collect relevant URL based features. Checks are 
carried out for redirections embedded in the web page structure and those 



   

 

   

   
 

   

   

 

   

    AI-driven approach for robust real-time detection 93    
 

    
 
 

   

   
 

   

   

 

   

       
 

provided through URL shortening services. The former is indicated by the 
presence of a URL in the meta tag’s refresh attribute in the head section of the 
web page or the JavaScript’s window location attribute. In the latter, the 
shortened URL based redirections are determined by comparing the web page’s 
hostname against a list of known shortening URL providers we collected. If a 
match is found, short to long URL conversion is performed using Untiny’s 
online converter (http://untiny.com/). 

Step 4 Feature extraction 

All the features of a PDC web page are extracted from various local and external 
sources to build a training dataset in step 5. 

Step 5 Training a classifier 

Use the training dataset to train an ML algorithm to build the classifier. 

Prediction process 
The process of predicting a new web page requested by a user is shown in steps 2 to 8 in 
Figure 1. The web page is retrieved from a web server after being requested by the user. 
A check (2) is performed to establish whether it is a PDC web page or not. If it is not, it is 
passed to the browser and displayed to the user. If it is a PDC web page, any redirections 
are resolved (3). Its features are extracted (4) and passed as input to the classifier which 
makes a prediction (7–8). If the web page is classified as phishing, the user’s access to 
the web page is blocked or warned otherwise it is permitted. The designs of phishing web 
pages are likely to change over time as phishers adapt their methods to evade detection. 
We, therefore, propose periodic addition of new phishing web pages and re-training of 
the classifier to ensure the classifier always provides an optimal performance. 

Figure 1 The system architecture of the proposed model for predicting zero-day phishing PDC 
web pages (see online version for colours) 
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5 Experiments and results 

We designed several experiments to build and evaluate a binary classifier that predicts 
phishing PDC web pages. We ran two sets of experiments with the aim of identifying the 
most accurate set of features and the best performing ML algorithm for the classifier. In 
the first set, 12 traditional ML algorithms, comprising six standard ML algorithms and 
six ensemble algorithms, are used for evaluation. The former includes linear regression 
(LR), k-nearest neighbour (k-NN), decision tree (DT), naive Bayes (NB), SVM and 
artificial neural network (ANN) (Brownlee, 2016a, 2016b; Chauhan, 2020; Dickson, 
2019; Müller and Guido, 2017; Navlani, 2019; Nicholson, n.d.; Ray, 2017; VanderPlas, 
2017). The latter are random forest (RF) (Yiu, 2019), gradient boosting (GB) (Brownlee, 
2021a), LightGBM (LGBM) (Ke et al., 2017), XGBoost (XGB) (Brownlee, 2016a), extra 
trees (Brownlee, 2021b) and CatBoost (Hancock and Khoshgoftaar, 2020). In the second 
set of experiments, we evaluated the features using 3 DL algorithms namely fully 
connected feedforward deep neural networks (FC-DNN), long short-term memory 
(LSTM) and one dimensional convolutional neural network (1D CNN) (Al-Garadi et al., 
2018; Apruzzese et al., 2018; Berman et al., 2019; Dertat, 2017; Kiranyaz et al., 2021; 
Moolayil, 2019; Nguyen, 2018; Phi, 2018; Verma, 2019). We use eight standard ML 
performance metrics (described in Section 5.3 below) to compare the performance results 
of the algorithms. 

The ML experiments were runs on a machine with MS Windows Home, 16 GB 
memory and Intel’s i7 processor specifications. DL based experiments were run on 
Google’s Collaboratory platform. We developed and used a Python v3.6 application to 
extract and pre-process data, create a training dataset, and train and evaluate the 
algorithms. The extracted data was stored in the MySQL database. 

5.1 Training datasets 

We collected 13,494 legitimate and 12,621 phishing PDC web pages to build a training 
dataset. To obtain legitimate web pages, we first collected more than 100,000 top 
websites from a ranked list of 1 million most visited websites from Tranco 
(https://tranco-list.eu). Using the hostname of each website combined with each of the 
PDC phrases listed in Table 3 at a time, we searched for candidate PDC web pages 
related to these websites in the Google and Bing search engines. We extracted the 
maximum possible number of URLs returned by each search, downloaded the web page 
of each URL and then checked (using the PDC web page filtering procedure described in 
Section 4.2) whether it prompts for personal data or not. Finally, features of each of the 
confirmed PDC web page were extracted using our application and added to the MySQL 
database. 

We obtained a list of phishing PDC web pages from an online repository of the 
confirmed phishing URLs managed by PhishTank (https://www.phishtank.com). The 
database is one of the most reliable sources of blacklisted phishing URLs in the 
cybersecurity domain. Since the database is updated hourly, we downloaded its list four 
times a day over five days. In each list, we retrieved each active URL, downloaded its 
web page and then checked whether it is a PDC web page or not. We then extracted the 
features of all the qualified web pages and recorded them in the database. In several 
cases, multiple URLs were observed to belong to the same hostname, hosting the same or 
different PDC web pages. To avoid the possibility of the excessive influence of a few 



   

 

   

   
 

   

   

 

   

    AI-driven approach for robust real-time detection 95    
 

    
 
 

   

   
 

   

   

 

   

       
 

hostnames leading to a biased model, we limited each hostname to at most 20 unique 
URLs. 
Table 5 A summary of the collected data used to build the training dataset 

PDC web page type Source Size 
Legitimate Tranco’s list of most visited websites, Google and Bing 

search engines 
13,494 

Phishing PhishTank online repository 12,621 
  26,115 

5.2 Data pre-processing 

We applied several standard data pre-processing techniques to transform raw data into a 
form that ML algorithms can efficiently learn to produce optimal prediction results. We 
first identified features with missing values, as summarised in Table 6. There is no 
standard threshold percentage to determine whether a feature with missing data should be 
used or not. For this study, we set a threshold of 50%, which is commonly used by many 
practitioners (Kunal, 2015; Madley-Dowd et al., 2019). We, therefore, dropped features  
# 4 and 3 as they exceeded the threshold. We also analysed correlations between the 
features using Pearson’s correlation matrix (Brownlee, 2020; Sillipo and Widmann, 
2019) in order to determine redundant features. We dropped features # 24, 25 and 30 
because they have correlation values of 1.0 with features # 22, 23 and 29 respectively. 
We then encoded all categorical features as unique numeric values, with missing values 
given their unique labels (Pathak, 2018). 

Four imputation methods (mean, median, most frequent and k-NN (k = 4), which are 
commonly used in replacing missing values in numerical features, were compared. We 
found that mean imputation produced the best performance when we ran one of the 
algorithms (RF) on the dataset and therefore it was used to replace the missing values. 
Finally, we applied a data scaling technique (Brownlee, 2016b) to standardise the data 
ranges of all the features by transforming the data in each feature such that its distribution 
has a mean value of 0 and a standard deviation of 1. 
Table 6 Features with missing values 

Feature # Feature name % missing values 
4 Domain in alternate URL 91.4 
3 Domain in canonical URL 87.2 
2 Domain identity in copyright 48.0 
26 Type of TLS certificate 45.4 
27 Domain, certificate and geolocation country matching 42.3 
22 Domain validity 14.2 
23 Domain age 14.1 
24 Form handler’s domain validity 14.1 
25 Form handler domain’s age 14.1 
6 The ratio of void and same web page links 1.9 
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5.3 Performance results 

We use various evaluation measures to report the prediction performance of the 
classifiers. These are accuracy, false positive rate (FPR), false negative rate (FNR), 
precision, recall, F1-score, ROC curve and area under curve (AUC) (Brownlee, 2014, 
2018; Müller and Guido, 2017). They are defined as follows: 

/Accuracy TP TN TP TN FP FN= + + + +  

 /FPR FP FP TN= +  

/FNR FN FN TP= +  

/Precision TP TP FP= +  

/Recall TP TP FN= +  

1- 2* * /F score Precision Recall Precision Recall= +  

The above performance measures are derived from the counts of true positives (TP), false 
positives (FP), true negatives (TN) and false negatives (FN). Note that if an instance is 
positive and it is classified as positive, it is defined as TP. If the instance is negative and 
it is classified as positive, it is FP. A negative instance classified as negative is TN and if 
it is classified as positive, it is called FN. A positive instance in this problem is the 
phishing PDC web page. We present and compare the results of individual classifiers for 
both traditional ML and DL experiments in the following subsections. 

5.3.1 Results of traditional machine learning algorithms 
The 12 traditional ML algorithms were run and their results were compared to identify 
the best performing algorithm for the classifier. First, automated feature selection using a 
recursive feature elimination method (Sillipo and Widmann, 2019) with cross validation 
and RF algorithm was performed which identified a subset of 26 features to be the best 
features for the classifier. A stratified cross validation technique (k-fold where k is 10) 
(Brownlee, 2016b; Müller and Guido, 2017) was applied to train and test the algorithms 
in order to obtain their average prediction scores. As summarised in Table 5, the dataset 
composition by classes is nearly balanced, thus class balancing techniques were not 
applied. Table 7 summarises the results of the untuned algorithms and Figure 2 shows the 
performances of ML algorithms across all threshold values in their ROC curves. The 
results indicate that CatBoost has the highest accuracy, the lowest FPR and the second 
lowest FNR, thus, identified as the best algorithm for the implementation of the classifier. 
The CatBoost was then tuned using a random search method (Worcester, 2019) to 
optimise its performance. The tuning of CatBoost yielded an accuracy of 99.02%, FPR of 
0.90% and FNR of 1.03%. Values of hyperparameters of the tuned CatBoost are indicated 
in Table 8. 
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Table 7 Performance results of the traditional ML algorithms 

Algorithm Accuracy (%) FPR (%) FNR (%) Precision Recall F1 score AUC 
LR 94.87 3.71 1.48 0.96 0.93 0.95 0.98 
K-NN 95.72 2.91 5.74 0.97 0.94 0.96 0.98 
DT 97.42 2.59 2.57 0.97 0.97 0.97 0.97 
NB 78.48 1.33 43.11 0.98 0.57 0.72 0.96 
SVM 96.00 2.48 5.63 0.97 0.94 0.96 0.99 
ANN 96.94 2.18 3.99 0.98 0.96 0.97 0.99 
RF 98.45 1.13 2.00 0.99 0.98 0.98 1.0 
GB 97.89 1.48 2.77 0.98 0.97 0.98 1.0 
LGBM 98.55 1.05 1.90 0.99 0.98 0.98 1.0 
XGB 98.71 1.09 1.65 0.99 0.98 0.99 1.0 
ExtraTrees 98.49 1.12 1.68 0.99 0.98 0.98 1.0 
CatBoost 98.89 1.03 1.56 0.99 0.98 0.99 1.0 

Figure 2 ROC curves of the trained traditional ML algorithms (see online version for colours) 

 

Table 8 Optimal values of hyperparameters of the tuned CatBoost 

Parameter Description Value 
iterations Number of times the model evaluates the validation data using the loss 

function before updating its parameters 
1,100 

learning_rate The rate at which the model updates its parameters to improve its 
validation error 

0.1 

depth Number of levels in each decision tree 8 
subsample The subsample ratio of columns when constructing each tree 0.4 
l2_leaf_reg L2 regularisation term on weights 9 
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5.3.2 Results of DL algorithms 
The three DL algorithms were run on the same dataset as the previous algorithms to 
evaluate the features. First, the training dataset for LSTM and 1D CNN was converted 
into a sequential shape, a standard input data format for the two algorithms, with a time 
step assigned to 1. The algorithms were then tuned by a random search method. We first 
identified key hyperparameters for tuning and their considerable range of values for 
evaluation. In each hyperparameter, we identified a set of considerable values for 
performance tuning (indicated in Table 9). We also attempted to tune with multiple 
hidden layers. We found that only one hidden layer was sufficient to produce optimal 
performance in each algorithm. Additional layers did not improve the performances. The 
identified optimal values of all the hyperparameters were then used to build the 
classifiers. The final result of each classifier was obtained by taking an average of the 
performances of five runs of the tuned classifier. Table 10 summarises the performance 
results of the tuned algorithms. Figures 3(a)–3(c) illustrate network architectures of the 
tuned DL algorithms along with the tuned hyperparameters and their optimal values. 
Table 9 Hyperparameters and their ranges of values evaluated for tuning the three DL 

algorithms 

Hyperparameter Range of evaluated values 
Number of neurons in dense layers of  
FC-DNN/memory units in a hidden layer of 
LSTM/filters in a convolution layer of CNN 

10, 30, 50, 80, 100, 150, 200, 300, 400, 600, 800, 
1,000, 1,200, 1,400, 1,600, 1,800, 2,000, 2,200, 

2,400, 2,800, 3,000 
Activation functions Relu, tanh, sigmoid, hard_sigmoid, linear, 

softmax, softplus, softsign 
Optimisation algorithms SGD, RMSprop, Adagrad, Adadelta, Adam, 

Adamax, Nadam 
Learning rates 0.001, 0.01, 0.1, 0.2, 0.3 
Kernel initialisers Uniform, lecun_uniform, normal, zero, 

glorot_normal, glorot_uniform, he_normal, 
he_uniform 

Dropout rates 0.1, 0.2, 0.3, 0.4, 0.5 
Batches 15, 30, 50, 70, 90, 110, 130, 150 
Epochs 10, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300 

Table 10 Performance results of the DL algorithms 

Algorithm Accuracy (%) FPR (%) FNR (%) Precision Recall F1 score AUC 
FC-DNN 97.28 2.13 3.33 0.98 0.97 0.97 0.97 
LSTM 95.71 3.50 5.11 0.96 0.95 0.96 0.99 
CNN 95.66 3.14 5.61 0.97 0.94 0.95 0.98 
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Figure 3 (a) FC-DNN architecture of the classifier with optimal values of the tuned 
hyperparameters (b) LSTM architecture of the classifier with optimal values of the 
tuned hyperparameters (c) 1D CNN architecture of the classifier with optimal values of 
the tuned hyperparameters 

 
(a) 

 
(b) 

 
(c) 
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5.3.3 Overall results and feature analysis 
We found that the tuned CatBoost achieved the highest performance of all algorithms 
across most metrics. Except for the NB, all the algorithms, however, exhibited good 
performance values in all metrics. Given that the algorithms use different assumptions to 
develop their prediction rules, the observed good results show that our features are 
generally effective in predicting phishing web pages. It is interesting to see that a number 
of traditional ML algorithms, mostly the ensembles, have outperformed the DL 
algorithms. Recent studies have shown that the later tend to outperform the former on 
prediction tasks involving unstructured data such as texts and images. However,  
Shwartz-Ziv and Armon (2022) empirically illustrated that ensemble algorithms tend to 
outperform DL algorithms in most classification problems involving structured/tabular 
data. Given that our data is also structured/tabular, it is not surprising that we also 
observe the same trend. In addition, traditional algorithms tend to perform well in small 
and medium size datasets while DL algorithms perform well in large datasets (Moolayil, 
2019). Our dataset is relatively smaller compared to some of those experimented by 
Shwartz-Ziv and Armon (2022), thus, it was unlikely to expect a different pattern. 

Table 11 breaks down the features in the full set (35 features) and the best set  
(26 features) by category. There is a high representation of features from each category in 
the best set, with the exception of WHOIS records, which has only 1 out of 4 in the best 
set. This indicates that all the categories are important in the prediction though to 
different extents. We also compared the performances of the two feature sets using the 
CatBoost algorithm to justify the use the best feature set. Figures 4(a)–4(b) show the 
differences between the two sets in terms of accuracy and error rates. Clearly, feature 
selection approach is important in this problem as it makes a significant difference. Using 
the same algorithm, we evaluated the performances of the best feature set belonging to a 
specific category only. The results are shown in Figures 5(a)–5(b). Web page reputation, 
URL structure, and web page structure and contents categories produced the highest 
accuracy and lowest FPR rates whereas WHOIS and TLS certificate categories achieved 
the lowest accuracy rates and the highest FPR rates. The former, therefore, are the 
strongest predictors while the latter are the weakest. Though we replaced all the missing 
values with the imputed ones, the high percentages of missing values of the WHOIS and 
TLS certificate related features (as indicated in Table 6) is likely to be the main reason 
why the two categories produced poor performances. 
Table 11 Distribution of feature categories in the set of the 26 best features 

Feature 
category # Feature category Tally of features 

in the full set 
Tally of features 

in the best set 

Best features # 
(see Table 4 for 

feature #) 
1 Web page structure 

and contents 
7 5 1–2, 5–7 

2 URL structure 17 14 9–19, 22–24 
3 WHOIS records 4 1 27 
4 TLS certificate 2 2 29–30 
5 Web page reputation 5 4 31–32, 34–35 

Similarly, we evaluated the performance contributions of the novel and existing features 
in the set of best features and compared them against the overall set of best features [see 
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Figures 6(a)–6(b)]. While our novel features achieved better results compared to the 
existing features, a combination of the two increased the overall accuracy and lowered 
the error rates, especially the FNR. This suggests that their combination is important for 
achieving optimal prediction performances, as in the case of feature categories. 
Increasing the diversity of the features is also likely to have a benefit in terms of 
hardening the solution against detection evasion techniques. 

Figure 4 (a) Accuracy rates of the feature categories (b) Error rates of the feature categories  
(see online version for colours) 

  
(a)     (b) 

Figure 5 (a) Accuracy rates of the feature categories (b) Error rates of the feature categories  
(see online version for colours) 

    
(a)     (b) 
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Figure 6 (a) Accuracy rates of the existing and novel features (b) Error rates of the existing and 
novel features (see online version for colours) 

  
(a)     (b) 

Figure 7 Ranking of the best features by importance weight (see online version for colours) 

  
Note: The numbers in the brackets represent the numbers of features as indicated in Table 3. 

To evaluate the individual features, feature importance weights of the best features were 
computed using the tuned CatBoost to determine the prediction strength of each feature 
relative to others. Figure 7 shows the ranking of the 20 novels and six existing features in 
terms of their importance weights. The feature with the largest weight indicates the 
strongest predictor while the one with the lowest weight is the weakest predictor. As a 
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general observation, the novel features rank higher than the adopted ones. The top 5 
features are the novel ones while the last 3 are the existing ones. Similarly, 6 of the 9 
third-party-based features are ranked higher compared to most of the 17 local features 
(those based on URL structure, and web page structure and contents). 6 of the top 7 
features are third-party-based features. This indicates that the novel and third-party-based 
features are more effective for the prediction. Most of the web page reputation-based 
features are the strongest predictors while the weakest ones consist mostly of the URL 
structure-based features. 

The highest ranked feature is feature 34 (see Table 4), which is related to the number 
of times the hostname’s IP address matches with the IP addresses of blacklisted phishing 
websites. The feature’s data distribution shown in Figure 8 (presented using boxen plots) 
explains this by showing that hosts of unknown phishing hostnames match with a large 
number of hosts previously known to host backlisted phishing websites while only a 
small number of legitimate hostnames do the same. The distribution suggests that many 
phishers use a small number of machines to host multiple phishing websites at different 
times. Meanwhile, the small number of hosts of legitimate websites that were matched 
indicates that phishers also use compromised legitimate hosts to do the same. This feature 
and feature 35, which is related to the number of times the domain’s IP address matches 
with IP addresses of blacklisted phishing websites, have a moderate correlation value of 
0.6, showing that there is a medium level of correlation between them. This, combined 
with the difference in ranking between the two features, suggests that phishers, in some 
cases, host their hostnames and domains on different machines. We confirmed this trend 
in our dataset by observing that some of the phishing web pages have different counts for 
features 34 and 35. We think phishers use the approach to limit the impact of detection 
through blacklisting, that is, if a host of the hostname is taken down, the domain can still 
operate. 

Hostname matched in a search engine’s top 5 results (feature 32) is the second ranked 
feature. As shown in Figure 9, about 90% of the phishing hostnames are not returned in 
the search results, suggesting either that they were not indexed because their web pages 
were recently created, or that the web pages did not meet the search engine’s high 
ranking indexing criteria. Conversely, about 90% of the legitimate hostnames were 
returned in the search results. Counts of a domain identity appearing in a web page 
structure and contents (feature 1) appear in 3rd place and is the highest ranked feature 
based on web page structure and contents. Figure 10 shows that a larger number of 
legitimate URLs contain domain identities which are appearing multiple times on a web 
page compared to those of phishing URLs. This confirms that many phishing web pages 
exhibit a mismatch between the domain names in their URLs and the identities of the 
organisations the web pages appear to belong to, thus, most of them are being hosted in 
the domains registered by attackers. 

Domain age (feature 27) takes the 6th position and it is the only feature from the 
WHOIS records category in the ranking. Its distribution of data (see Figure 11) shows 
that phishing domains have shorter domain ages, with the majority of them having ages 
between 1,000 and 4,000 days and with a median value of just below 2,000 days, while 
legitimate domains have longer domain ages, in which the majority have ages between 
3,500 to 8,000 days and a median value of just below 6,000 days. The observed domain 
ages of the phishing domains are still significantly longer than the expected ones reported 
in Akamai (2019). This suggests that attackers have generally increased the duration of 
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their domains staying active, possibly for evading detection techniques based on domain 
age. 

Figure 8 Data distribution of counts of hostname’s IP address matching with phishing blacklisted 
IP addresses (see online version for colours) 

  

Figure 9 Data distribution of the matching of hostnames in a search engine’s results (see online 
version for colours) 
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Figure 10 Data distribution of counts of domain identity appearing in the web page structure and 
contents (see online version for colours) 

  

Figure 11 Data distribution of domain age (see online version for colours) 

 

The TLS certificate type (feature 29) is the 7th feature and the highest ranked of the two 
features in the TLS certificate category. Figure 12 shows the breakdown of certificate 
usage by type for the two web page classes. As expected, the majority of phishing web 
pages still do not use any certificate. There are more of them using DV than OV and EV, 
suggesting that phishers are taking advantage of the least strict validation procedures in 
obtaining DV certificates to try to make their web pages as legitimate as possible. We had 
expected EV certificates to be popular among legitimate websites due to their high 
security and user trust but it is the least popular category. More surprisingly, a significant 
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percentage of legitimate websites do not use any certificate at all. This shows that most 
legitimate website owners are yet to understand the significance of using EV in their 
websites in improving security and users’ trust. 

Figure 12 Data distribution of types of TLS certificate (see online version for colours) 

 

Figure 13 Data distribution of counts of characters in a URL path (see online version for colours) 

  

The number of characters in the URL path (feature 19) takes the 8th position and is the 
highest ranked feature based on URL structure. From Figure 13, phishing web pages tend 
to have longer URL paths. This is consistent with other features related to URL paths 
including the number of forward slashes (feature 17), the number of numeric in a URL 
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path (feature 22), the number of dots in a URL path (feature 13), the number of 
obfuscation characters in a URL path (feature 16), number of encoded characters in a 
URL path (feature 9) and the use of obfuscation characters in the hostname (feature 15) 
being among the best predictors (at 11th, 13th, 14th, 15th, 16th and 21st ranking positions 
respectively). This suggests that phishers obfuscate their true URLs through the addition 
of various characters in URL paths, which increases the length of paths. The three URL 
based features (features 14, 10 and 23), which were also adopted from other works, were 
the least ranked ones and thus were the weakest ones among the best features. 

5.4 Detection time 

We measured the runtimes of the model’s stages (described in Section 4.2) namely 
retrieval of a web page from its server, PDC web page filtering, URL redirections check, 
feature extraction, training the dataset and prediction analysis. Table 12 summarises the 
average times. We only measured the feature extraction time for the 26 features in the 
best set. The sum of the average times of the stages in the classification process is a little 
under 7.2 seconds. Feature extraction is responsible for about 75% of the overall 
detection time. We observed that the extraction of 9 third-party and 17 local-based 
features take 3.05 and 2.31 seconds respectively, so the average time for a third-party 
feature is 0.34 seconds and that for a local feature is 0.14 seconds. Overheads in data 
retrieval from the third parties’ servers and network overheads are likely to be the main 
reasons for the difference. Comparing the extraction times for each of the third-party 
features with the average time for a local feature, Figure 14 shows that the blacklist and 
the search engine-based features have the longest retrieval times. They all take longer 
than the average local feature. It is important to note that the runtime of each activity 
could be improved with more efficient Python libraries and code optimisation. Also, the 
features were queried and generated sequentially and the overall speed could likely be 
improved by introducing some concurrency. 
Table 12 Runtimes of the model’s modules 

Module Runtime (s) 
PDC web page loading 0.8430 
PDC web page filtering 0.0976 
URL redirections check 1.2959 
Feature extraction 5.3600 
Prediction analysis 0.0002 
Total prediction time per web page 7.1537 
Training a classifier 18.2300 

5.5 Model validation using new data 

Phishers are likely to adopt new ways of designing their phishing web pages over time to 
evade some of the detection features. To check whether the performance of the model 
degrades with time, we collected a new testing dataset consisting of 2,736 legitimate and 
2,498 phishing PDC web pages 14 months after we collected the training dataset. After 
performing similar data pre-processes as described in section 5.3, the processed data was 
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tested against the same tuned CatBoost described in section 5.3.1 using the same training 
dataset described in section 5.1. The classifier achieved an accuracy of 99.05%, FPR of 
1.01% and FNR of 1.10%. Compared with the results reported in section 5.3.1, the model 
performed slightly better in terms of accuracy but slightly low in terms of error rates. The 
results confirm that the excellent performance achieved was not restricted to the specific 
dataset and that it remained effective in detecting phishing web pages after over a year. 
This indicates that frequent retraining will not be required to adapt to new tactics 
employed by phishers. 

Figure 14 Comparison of extraction times of the best features (see online version for colours) 

 

6 Discussion 

6.1 Comparison with existing works 

We compare the performance of our work against works which have also used ML to 
predict phishing web pages as a binary classification task. The comparison is done in 
terms of prediction performance, diversity of features, and the number of ML algorithms 
and metrics used for evaluation. Table 13 provides a summarised comparison chart. 
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Table 13 Performance comparison of some of the related works with our work 
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6.1.1 Prediction performance 
Our work has produced better performance across multiple metrics compared to most 
works. Note that Ma et al. (2009) evaluated their model against several datasets from 
different data sources with an accuracy ranging from 95% to 99% and error rates from 
0.9% to 33.5%. Although their best performance is in the same range as ours, their least 
good is significantly worse than ours. The performance of our model against two 
independent datasets, as described in Sections 5.3.1 and 5.5, showed less variation than 
theirs, suggesting that our model is more robust. It can also be observed that works by 
Jain and Gupta (2018), Sahingoz et al. (2019), Elsadig et al. (2022), Liu et al. (2022) and 
Alshingiti et al. (2023) achieved closest performances to ours with the latter producing 
slightly better results than ours in some metrics. However, it should be noted that our 
work has introduced a set of new features. This merits our model by prolonging it from 
the exposure of possible detection evasion techniques as it takes time for phishers to learn 
about existing features before attempting to evade the features, thus the solution. Other 
key differences with our work are the use of a large number of different categories of 
features and the third-party features, of which their advantages were explained in  
Section 2.3. In addition, Sahingoz et al. (2019) and Elsadig et al. (2022) used datasets of 
multiples times the size of our dataset and still achieved similar performances with ours. 
As ML algorithms tend to increase their performances with an increase in the dataset 
sizes, enlarging our dataset to a size like theirs is likely to significantly boost our 
performance even further. 

6.1.2 Diversity of features 
Along with Ma et al. (2009), our model has used five different categories of both third 
party and local based features. Jain and Gupta (2018), Sahingoz et al. (2019) and Liu  
et al. (2022) used two categories of local based features, Xiang et al. (2011) and Shirazi  
et al. (2017) used four categories of third party and local based features whereas Elsadig 
et al. (2022) and Alshingiti et al. (2023) used only one category of local based features. 
Using a large number of feature categories increases the difficulty faced by an attacker in 
evading detection. Furthermore, local based features can easily be evaded by attackers 
than the features derived from the information obtained from third party services. For 
instance, a phishing web page created by copying a legitimate web page and slightly 
modifying URL is difficult to distinguish from a legitimate web page and is unlikely to 
be identified using the features proposed by Sahingoz et al. (2019). Third party features, 
which are the strongest predictors in our model, are always difficult to emulate or forge 
because the services are highly secured. We think that a mixture of third party and local 
based features is ideal for a more robust and evasion resistant solution. 

6.1.3 Number of ML algorithms used for evaluation 
While other works have used between 2- and 7-ML algorithms to evaluate their 
classifiers, our work has used 15. The advantage of exploring a large number of 
algorithms is that it allows us to draw a more concrete conclusion on the general 
effectiveness of the features for a given prediction problem. That is, a good range of 
performances for most algorithms in this case shows that the features have a minimal 
dependence on the learning capability of specific algorithms, thus, are robust for the 
problem. 
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6.1.4 Performance metrics 
Our work has evaluated the classifier using eight performance metrics while the other 
works have used between 2 and 4 metrics. Important measures such as precision, recall 
and F1 score were not reported by some of the studies in the table whereas FNR was not 
reported explicitly by most studies. The latter is an important one as it measures the 
extent to which solutions misclassify true phishing websites, thus exposing end users to 
the attack. Evaluation using a small number of measures limits our understanding of the 
all-around effectiveness of the solutions. 

6.2 Limitations of our model 

Almost a half of our proposed best features were derived from third party services. Data 
retrieved from these services may be missing from time to time, for reasons including 
poor network connection, temporary unavailability of their servers or absent records in 
the databases. A high percentage of missing data is likely to reduce a detection 
performance. However, our experience during data collection suggests that scenarios 
which could give rise to missing data in third-party services are relatively rare in normal 
circumstances. In some features, for instance those related to TLS certificates and 
WHOIS records, missing data is quite common. In addition, we obtained better results in 
each model when we included all features with missing values under 50% compared to 
removing them completely. This suggests that our model, based on the training datasets 
used, can cope well with up to 50% of missing data in several features. This, however, 
might not be the case if training datasets with different data distributions are used. 

6.3 Application of the proposed model 

The web page loading time affects the web browsing user experience which in turn 
determines the percentage of users that are likely to decline to access the web page. The 
percentage increases as the loading time increases. As indicated in Table 13, our model 
takes 0.84 seconds to load a PDC web page on a desktop device and 6.31 seconds to 
predict it, giving a total prediction time of 7.2 seconds. According to MachMetrics 
(2021), at least 30% of users are likely to abandon the web page if the loading time 
exceeds 7 seconds. This is a significant loss to any website, especially the commercial 
ones. This means our model, if implemented as it is, will be less than ideal for real-time 
applications. However, the model’s prediction time can be reduced in two ways: 

1 using more efficient python libraries and coding style 

2 extracting most of the features in parallel. 

For instance, all the third-party features can be extracted concurrently thus reducing their 
total time of 3.05 seconds to the longest time to extract one of their features, which is 
1.19 seconds. Similarly, local based features can be extracted in parallel. The average 
time to extract one such feature is 0.14 seconds. The total time to load the web page and 
extract all the features in parallel would be 2.17 seconds (0.84 + 1.19 + 0.14). This time 
is less than 3 seconds, which is a range considered to be fast by many users according to 
MachMetrics (2021). With this improvement, our model can thus be implemented for 
real-time applications to protect users at the web browser as a built-in functionality or as 
a plug-in, for instance. 
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Alternatively, our model can be used to build a blacklist of phishing URLs by 
predicting phishing web pages from PDC web pages collected from various data sources 
such as emails and social media posts. The blacklist can then be used to defend users by 
integrating it with a web browser as a built-in functionality or as a plug-in. The blacklist 
can also be used to complement existing general-purpose blacklists for research purposes. 

7 Conclusions 

In this paper, we have proposed an ML based model that can instantly and accurately 
predict zero-day phishing PDC web pages using a novel set of highly diversified features. 
First, we investigated and proposed 35 features derived from various distinctive structural 
characteristics of phishing PDC web pages of which 26 features were found to be the 
most relevant features for the prediction task. The features were evaluated against 12 
traditional ML and 3 DL algorithms whereby most of the algorithms were observed to 
produce relatively good performances. This indicates that our features are robust for this 
prediction problem. Of all the algorithms, CatBoost yielded the optimal prediction 
performance of accuracy of 99.02%, FPR of 0.90% and FNR of 1.03%. The 26 features 
are grouped into five categories namely web page structure and contents, URL structure, 
WHOIS records, TLS certificate and web page reputation. 9 of the features are based on 
third-party services while 17 of them were derived from the web page’s structure. Our 
feature analysis indicated that novel and third-party based features are stronger predictors 
than the adopted and local based features. We also found that most of the features based 
on web page reputation against blacklisted phishing IP addresses and search engines are 
the most influential ones for the prediction whereas URL based features are among the 
least influential ones. The prediction time of the model was measured at 7.2 seconds but 
the time could go as low as 2.17 seconds if the features were to be extracted concurrently. 
The time suggests that the model can be used for real-time protection of users from 
accessing phishing PDC web pages without degrading their web browsing experiences. 
We also tested the model (without retraining) against a new dataset collected 14 months 
after collecting the first dataset. The results showed that the model performs consistently 
on different datasets, suggesting that the features are reliable for addressing the problem 
in long term. They also show that phishers do not vary their tactics in creating their 
websites frequently. 
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