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Abstract: This work aims to study the method of design optimisation of the 
bus body frame orienting the frontal crashworthiness. The optimal design 
variables are preliminarily determined based on the frontal crashworthiness 
analysis. Based on the analysis of correlations between the concerned responses 
and design variables and the comprehensive contribution analysis, the design 
variables for optimisation are finally determined. The surrogate model is 
established by the Latin hypercube design of experiments and the response 
surface method. The grey wolf (GWO) algorithm is improved by introducing 
the method of generating initialisation by the Tent mapping and improving the 
convergence factor by the Sigmoid function. By the improved GWO algorithm, 
the deterministic optimisation and reliability optimisation are performed and 
evaluated. The results of finite element analysis reveal that the proposed 
optimisation scheme can be effectively improved the performance of frontal 
crashworthiness of the bus body frame with high reliability. 
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1 Introduction 

With the development of new energy technology, the promotion of environmental 
protection and low-carbon driving, electric passenger vehicles have gradually become the 
main transport means for road passengers. The safety of passenger vehicles in collision 
and the crashworthiness of passenger vehicle structures have received widespread 
attention in current automotive industry (Sun et al., 2011; Lv et al., 2016; Xia et al., 
2018). 

The crashworthiness oriented vehicle body design is a complex and nonlinear 
engineering problem. The crashworthiness safety of vehicle body is affected by a great 
number of factors. For instance, the variable impact loads generated in the collision 
would lead to various uncertainties. However, the uncertainty factors may cause the 
design exceeding the constraint boundaries, and finally lead to unreliable structural 
design. Therefore, many scholars have conducted reliability research on vehicle body 
collisions to respond to this problem. By combining the non-dominated sorting genetic 
algorithm II (NSGA-II) and Monte Carlo Simulation (MCS) methods, reliability-based 
design optimisation (RBDO) methods were proposed by Lv et al. (2016) and Xia et al. 
(2018). Gu et al. (2017) calculated the constrained reliability level via the first-order 
reliability method (FORM) and the second-order reliability method (SORM), 
respectively. The results of comparison with MCS revealed that the method of SORM is 
more accurate than FORM. Chen et al. (2013) developed an optimal shifting vector 
(OSV) method to improve the efficiency of RBDO. Huang et al. (2017) adopted a 
decoupling strategy in RBDO orienting crashworthiness and thus the optimisation 
efficiency has been greatly improved. 

Generally, it is necessary to consider the design constraint in the optimisation process 
for body structure design optimisation. To solve such optimisation problems, scholars 
widely use intelligent optimisation algorithms and find the optimal solution through 
iteration (Salmani et al., 2022). Among the intelligent optimisation algorithms, particle 
swarm optimisation (PSO) is one of the most widely used global optimisation methods. 
However, the main problem with this method is that, it is prone to falling into local 
optimum and thus not easy to obtain the global optimum solution, resulting in  
non-uniform distribution of the optimum solution (Kennedy and Eberhart, 1995). It is not 
easy to obtain the global optimum solution, resulting in uneven distribution of the 
optimum solution. Non-dominated sorting genetic algorithm (NSGA-II) is another widely 
used optimisation algorithm with the characteristic of fast convergence speed (Deb et al., 
2000). Besides, there are several well-known optimisation algorithms in various fields, 
including genetic algorithm (GA), ant colony algorithm (ACO), differential evolution 
(DE), etc. (Mittal et al., 2016). Compared with widely utilised heuristic algorithms such 
as PSO, DE, and GSA, the grey wolf (GWO) algorithm is much advantageous and has 
been used in the many fields such as aircraft path planning, cluster analysis, economic 
scheduling problems, and feature subsets selection etc. (Mirjalili et al., 2014; Zhang and 
Wang, 2019). 

Although the GWO algorithm presents some certain advantages, it also has 
shortcomings, such as being easy to fall into the local optimum solution, strong 
dependence on the initial population, and premature convergence (Xu et al., 2017). 
Focusing on the above problems, many scholars have done much work to improve the 
GWO algorithm. The most common way to improve is to adjust the algorithm parameters 
or modify the position updating formula, to improve the algorithm convergence speed 
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meanwhile avoiding the algorithm from falling into the local optimum. Mittal et al. 
(2016) tuned the parameters of the GWO algorithm by different functions with various 
slopes. Long et al. (2018) proposed the ROL-GWO algorithm by modifying the 
parameter ‘C’ in the GWO algorithm. In addition, the author also modified the position 
update mechanism of the GWO algorithm and proposed the EEGOW algorithm (Long  
et al., 2019). Some scholars try to add some search strategies to the algorithm to improve 
its performance. For instance, in Wei et al. (2017), the optimal guided search equation is 
introduced into the GWO algorithm, making the algorithm more adaptive. Moreover, the 
algorithm performance can also be improved by combining the algorithms according to 
the advantages and disadvantages of each algorithm. For example, Gaidhane and Nigam 
(2018) propose a GWO-ABC algorithm by leveraging the advantages of GWO and 
artificial bee colony (ABC). Similarly, there are other combinations, such as PSO and 
GWO (Kamboj, 2016), DE and GWO, etc. (Zhu et al., 2015). 

The studies mentioned above show that most of the optimising design algorithm has 
its own limitations and advantages. Indeed, the improved algorithm can improve the 
performance of some problems, but it does not mean that all the optimisation problems 
can be solved perfectly. In this work, an optimising design method for the safety of 
frontal crashworthiness of the electric bus body frame is proposed based on the improved 
GWO algorithm. 

2 Crashworthiness finite element model and design variables 

2.1 Crashworthiness finite element model 

Based on the Hypermesh/LS-DYNA software, the finite element model for an electric 
bus body frame is established, ignoring the related electrical equipment, glass and 
decorations, and the body skin. The simplified crashworthiness finite element model of 
the commercial electric bus body frame is shown in Figure 1. The model contains 587629 
mesh elements and 582572 nodes, and the total mass is 1142.47kg. 

Figure 1 Frontal crashworthiness model of the electric bus body frame (see online version  
for colours) 

 



   

 

   

   
 

   

   

 

   

    Optimisation of commercial bus body frame 27    
 

    
 
 

   

   
 

   

   

 

   

       
 

In this paper, following the requirements of the frontal collision test of automobiles in 
‘Occupant Protection in Frontal Collision of Automobiles’ (National Standard of China 
GB11551-2014), the finite element simulation of a 100%-frontal-rigid collision at a speed 
of 50km/h is carried out, and the simulation time is 80ms. In the finite element analysis, 
due to the characteristics of the element or the material parameter settings, the time step 
of the element may be smaller than the minimum time step set in the card resulting in the 
scaling of mass. Figure 2 shows the collision energy curve and mass scaling curve. 
According to the requirements of the law of energy conservation, the total energy remains 
unchanged in an effective collision. The total energy is composed of kinetic energy, 
internal energy, hourglass energy and slip interface energy, in which the slip interface 
energy is produced by friction and damping. Sharp slippage would produce large positive 
slip interface energy, but undetected penetrations which are not detected in the model 
would produce large negative slip interface energy. Additionally, Hourglass energy is the 
energy cost in resisting the deformation caused by the Gaussian single-point integration 
method adopted in the software calculation. It can be found that the kinetic energy 
decreases and meanwhile the internal energy increases, and eventually the internal energy 
tends to be constant when the kinetic energy decreases to zero. Moreover, the sliding 
interface energy meets the requirement that it should be less than 5% of the total energy. 
It can be observed that at the moment of 80ms, the total collision energy is 111,687J, and 
the collision sliding interface energy is 737.374J, accounting for 0.66% of the total 
energy; meanwhile, the mass increases with a maximum scaling of 3.77%. Since the 
proportions are all within 5% of the legal requirements, it is reasonably to believe that the 
established crashworthiness finite element model is effective and can be used for 
subsequent research. 

Figure 2 Variation of energy and mass in collision, (a) energy variation curve (b) mass scaling 
curve (see online version for colours) 

 
(a) (b) 

2.2 Preliminary selection of the optimisation variables 

During the 100% frontal collision, the electric bus body frame can be divided into energy 
absorption area, solid area and rear end energy absorption area according to the 
deformation. The front-end energy absorption area offers the major energy absorption 
function, and most of the remaining energy unabsorbed is transmitted to the rear through 
the lower structure of the body frame. By evaluating the energy absorption of the front-
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end energy absorption area, the components in the energy-absorbing area and the solid 
area are mainly chosen for optimisation to ensure that the driver has enough living space. 
To comprehensively consider the deformation and energy absorption of each  
energy-absorbing component, ten groups of component are preliminarily selected for 
optimisation and the corresponding ten thickness parameters are selected as the variables 
of design optimisation (see Figure 3 and Table 1 for details). 

Figure 3 Illustration of the components preliminarily selected for optimisation (see online 
version for colours) 
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Table 1 Parameters of the components preliminarily selected for optimisation 

 Component name Sectional dimension (mm) Thickness (mm) 
x1 Front sash beam and front girdle beam 38.5×38.5 1.5 
x2 Cockpit bottom frame 38.5×38.5 1.5 
x3 Instrument panel beam 18.5×28.5 1.5 
x4 Front girth post and beam 38.5×38.5 1.5 
x5 Front window post 28.5×38.5 1.5 
x6 Cockpit side frame 38.5×38.5 1.5 
x7 Frame beam 38×58 2 
x8 Middle cockpit frame 19×29 1 
x9 Bottom transverse stringer 28×38 4 
x10 Frame cantilever beam 38×58 4 

The maximum total absorbed internal energy of the preliminarily selected optimised 
component reaches 86686.5J, accounting for 80.2% of the total internal energy as shown 
in Figure 4. Thus, it is believed that the frontal crashworthiness performance is expected 
to be considerably improved by optimising the selected components. Referring to 
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‘Protection of Occupants in the Cab of Commercial Vehicles’ (National Standard of 
China GB26512-2021), the design of the cab should eliminate the danger to the cab 
occupants as much as possible in a frontal collision. In this paper, as shown in Figure 5, 
three measurement points are selected to measure the intrusions, including the steering 
wheel centre position for measuring the intrusion I1, the front of the cockpit for 
measuring the intrusion I2, and the rear of the cockpit for measuring the intrusion I3. The 
intrusion amount refers to the displacement of each measuring point along the collision 
direction. Besides, the total internal energy absorption energy E of the front-end energy 
absorption area and the total mass M of the selected ten groups of components for 
optimisation are utilised as the response. 

Figure 4 Maximum energy absorption and proportion of each selected group of component  
(see online version for colours) 
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Figure 5 Three measurement points for measuring the intrusions (see online version for colours) 
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2.3 Determination of the variables for design optimisation 

Firstly, 60 sets of experiment are designed for the ten thickness variables x1, x2,…, x10 by 
using the Latin hyper-dimension method. The upper and lower limits of each thickness 
variable are set to be 50% of the initial value for the rationality of subsequent fitting. The 
GRA analysis method is adopted to verify the correlation between the design variables 
and the optimisation response and to improve the optimisation efficiency in this study. 
The relative strength of an item affected by other item factors can be judged by the GRA 
method, based on the similarity and difference of the varying trend of the elements  
(Li et al., 2019). 

The grey correlations between the 10 thickness variables and the 5 output responses 
obtained through the GRA calculation are illustrated in Table 2. It is believed that the 
closer the grey correlation coefficient is to 1, the higher the correlation will be. It is seen 
from Table 1 that the correlations all exceed 0.5, and most of them remain above 0.6. 
Thus, the thickness variables corresponding to the selected components can better reflect 
the changes in optimisation response. 
Table 2 Grey correlation between design variables and optimisation response 

Design 
variables 

Optimisation response 
I1 I2 I3 E M 

x1 0.5868 0.5990 0.6744 0.5983 0.5931 
x2 0.5952 0.6047 0.6844 0.5833 0.5884 
x3 0.5963 0.6036 0.6521 0.5773 0.5725 
x4 0.6015 0.6002 0.6815 0.5883 0.5872 
x5 0.5990 0.6127 0.7007 0.5876 0.5833 
x6 0.5880 0.5997 0.6623 0.5945 0.5786 
x7 0.5979 0.5992 0.6402 0.5927 0.5994 
x8 0.6043 0.6020 0.6879 0.5897 0.6048 
x9 0.6148 0.6211 0.6419 0.5812 0.5947 
x10 0.5673 0.5676 0.6275 0.6152 0.6158 

The entropy weight method and the TOPSIS method are adopted to further evaluate the 
degree of correlation between the design variables and the optimisation response, and 
determine the influence of each design variable on the response. The specific calculations 
are described as follows. 

1 Calculate the data normalisation as 

2

1

,ij
ij m

ij
i

x
r

x
=

=


 (1) 

 where xij is the grey correlation degree of the ith (i = 1,2,...,m) design variable to the 
jth (j = 1,2,…,n) performance index; m is the number of design variables, and n is the 
number of optimised responses. 
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2 The proportion pij corresponding to the ith design variable in the jth optimisation 
response is calculated as 

1

,ij
ij m

ij
i

r
p

r
=

=


 (2) 

3 Calculate the entropy value ej of the jth optimisation response as 

( )
1

1 ln ,
ln( )

m

j ij ij
i

e p p
m =

= −   (3) 

4 Calculate the weight coefficient wj for each optimisation response as 

( )
1

1
,

1

j
j n

j
j

e
w

e
=

−
=

−
 4) 

5 By constructing the decision matrix, the positive and negative ideal solutions Z+, Z–

can be calculated as follows: 

,ij ij ijv w r=  (5) 
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 (7) 

 Additionally, the Euclidean distance ,i iD D+ −  between each design variable and the 
positive and negative ideal solutions is respectively expressed as 

( )2

1

,
m

+
i j ij

j

D Z v+

=

= −  (8) 

( )2

1

,
m

i j ij
j

D Z v− −

=

= −  (9) 

6 Calculate the proximity η of each design variable to the optimisation response as 

,i

i i

D
η

D D

−

+ −=
+

 (10) 

Note that the proximity η could be regarded as the contribution coefficient of each design 
variable to the optimisation response. The larger the proximity η is, the closer the 
correlation between the design variable and the optimisation response would be. 
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The calculation results are shown in Table 3, wherein iD+  and iD−  represent the 
Euclidean distance between each design variable and the positive and negative ideal 
solutions, and η represents the closeness. The degree of closeness η can be considered as 
the contribution coefficient of each design variable to the response. The larger η is, the 
greater the correlation between the design variable and the response will be. 

In addition, except design variable x8 the closeness of which exceeds 0.3, the 
closeness of the top five design variables to the response is relatively balanced. 
Combined with Table 1, it can be seen that there is a clear correlation between the top 
five design variables and the optimal response. Therefore, the top five design variables 
are chosen for subsequent optimisation to reduce the workload of optimisation. The top 
five design variables include x8, x7, x4, x5 and x3. 
Table 3 Comprehensive contribution analysis 

Design variables D+ D- η Sequence 
x1 0.050 0.012 0.068 7 
x2 0.050 0.014 0.074 6 
x3 0.044 0.014 0.082 5 
x4 0.040 0.019 0.109 3 
x5 0.051 0.017 0.084 4 
x6 0.055 0.009 0.048 9 
x7 0.037 0.020 0.120 2 
x8 0.005 0.056 0.313 1 
x9 0.053 0.011 0.059 8 
x10 0.054 0.008 0.043 10 

3 Formulation of surrogate model 

Focusing on the frontal crashworthiness, the response surface methodology (RSM) 
method is adopted here to fit the surrogate model for the electric bus body frame. RSM as 
a statistical method uses multivariable quadratic regression equations to fit and solve the 
multivariate problems. It can also connect the input variables with the response 
characteristics through a high-order model, and thus is more suitable for nonlinear 
problems (Gurumoorthy et al., 2020). The common second-order polynomial response 
surface function expression is described as follows: 

-1

0
1 1 1

2

1

,
n n n

i j ij i j
i i j j

n

ii i
i

Y a a X a X X a X ξ
= = = + =

= + + + +    (11) 

where X1, X2,…,Xj are design variables; a0, ai, aii, aij are undetermined coefficients; n 
represents the number of design variables; ξ denotes the observation error and noise; Y is 
the response surface fitting function. This study establishes five response surface models, 
including three intrusions I1(x), I2(x) and I3(x), energy absorption E(x) of the front-end 
energy absorption area, and total mass M(x) of the five groups of optimising components. 
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The method of mutual cross detection is adopted to evaluate the accuracy of the 
surrogate model. The scatter plot for the predicted and the simulation value is shown in 
Figure 6. The closer the scatter point is to the 45° line, the higher the fitting accuracy will 
be. Besides the scatter plot, the fitting degree R2 is also utilised to evaluate the fitting 
accuracy of the model, the calculation formula of which is given as follows: 

( )

( )

test

test

2

12

2

1

1 ,

n

p p
p
n

p
p

y y

R
y y

=

=

−

= −

−




 (12) 

where ntest is the number of random samples used to test the accuracy of the approximate 
model; yp and py  represents the actual response value and predicted response value of 
the pth sample point, respectively; y  is the mean of the actual response values. The 
calculation results of the fitting degree R2 are shown in Table 4. It can be seen that the 
values of R2 of the five optimised responses all exceed 90%, that is the fitting accuracy is 
relatively high. Thus, the surrogate model can be used instead of the finite element model 
for design optimisation. 

Figure 6 Scatter plot of the response surface model (see online version for colours) 

 

Table 4 Fitting accuracy (R2) of the response surface model 

 I1 I2 I3 E M 
R2 0.90 0.93 0.91 0.92 0.92 
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4 Optimisation algorithm 

4.1 GWO algorithm 

The GWO algorithm is a new swarm intelligence algorithm of optimisation inspired by 
the predation behaviour of grey wolves. The hunting process of wolves comprises 
encircling and attacking and can be mathematically described as follows (Mirjalili et al., 
2014): 

1 Wolves surround their prey 

( ) ( ) ,p t t= ⋅ −D C X X  (13) 

( 1) ( ) ,pt t+ = − ⋅X X A D  (14) 

 wherein equation (13) represents the distance between the grey wolf and its prey, and 
equation (14) is the position update formula; Xp(t) represents the position of the prey 
in the tth generation; X(t) represents the individual grey wolf in the tth generation. The 
coefficient vectors A and C can be calculated as 

( )12 1 ,= −A a r  (15) 

12 ,=C r  (16) 

 where a is the convergence factor, which decreases linearly from 2 to 0 with the 
iteration; r1 is a random number in the interval [0, 1]. 

2 Once the prey is found, the wolves would attack it. At this time, the α wolf, β wolf, 
and δ wolf are the closest to the prey, and other wolves will move closer to them. 
The distance of α wolf, β wolf and δ wolf to other individuals is respectively 
calculated as 

1

2

3

,

δ δ

 = ⋅ −
 = ⋅ −
 = ⋅ −

α α

β β

D C X X

D C X X

D C X X

 (17) 

 where Xα, Xβ, Xδ represents the current position of α wolf, β wolf and δ wolf, 
respectively; C1, C2, C3 are random vectors, X is the position of the current Grey 
Wolf. The step size and direction of the individual ω wolf towards the α wolf, β wolf 
and δ wolf is calculated as follows 

1 1

2 2

3 3

,

δ δ

= − ⋅
 = − ⋅
 = − ⋅

α α

β β

X X A D
X X A D
X X A D

 (18) 

The final position of the ω wolf can be thereby derived by 

1 2 3( 1) .
3

t
+ +

+ =
X X X

X  (19) 
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4.2 Improved GWO algorithm 

Randomly generating the initialised population may cause uneven population distribution 
and cannot ensure group diversity, and thereby affects the result of optimisation. 
However, owing to the randomness characteristics of the chaotic motion, the algorithm 
can jump out of the local optimum solution during the optimisation, and thus improve the 
global search ability. Common chaotic mappings include tent mapping, logistic mapping, 
etc. Since logistic mapping is relatively simple, it is widely adopted in the research. It is 
proved that the uniformity of tent mapping is better than that of logistic mapping (Shan et 
al., 2005). Thus, in this work tent mapping is utilised to initialise the population, and the 
mathematical expression is given as 

1

,           0
,

1 ,       1
1

i
i

i
i

i

x
x u

ux
x

u x
u

+

 ≤ <=  − ≤ ≤
 −

 (20) 

where the relationship between u and the chaotic value x is shown in Figure 7. It can be 
seen that when u ≥ 0.5, the mapping has good chaotic properties and the value is 
relatively uniform (Teng et al., 2018). In this paper, we assume u = 0.7. 

Figure 7 Impact of u on the chaotic property 

 

It can be seen from equation (14) and equation (15) that the convergence factor a is 
closely related to the search ability of the algorithm. However, the characteristic that the 
number of iterations linearly decreases cannot reflect the search ability of the algorithm. 
To balance the local and global search ability of the algorithm, the linear factor needs to 
be improved (Al-Omari et al., 2005; Qin and Jiang, 2006). The Sigmoid function is 
employed to improve the linear convergence factor, and its characteristics are displayed 
in Figure 8. By the sigmoid function, the convergence speed of the algorithm at the 
beginning and the end of the convergence becomes slow, and thereby the realisation of 
avoiding premature convergence and missing the global optimum solution can be done. 
The specific flow chart of the improved GWO algorithm is illustrated in Figure 9. 
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Figure 8 Comparison of three convergence factors (see online version for colours) 

 

Figure 9 Flow chart of the improved GWO algorithm 
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4.3 Simulation and analysis 

To evaluate the performance of the improved GWO algorithm, four standard test 
functions f1(x) ~ f4(x) presented in Table 5 are selected for simulation experiments 
(Mirjalili et al., 2014). f1(x)~f4(x) refers to the function of Sphere, Schwefel, Ackley, and 
Griewank, respectively. Wherein Sphere and Schwefel are unimodal functions, and 
Ackley and Griewank are multimodal functions. The four test functions are all of  
30-dimension, and the theoretically optimal solutions all are zeros. The plots of the  
two-dimensional spatial characteristics of the functions are shown in Figure 10. 
Simulation experiments are conducted for the algorithms comprising the improved GWO, 
the standard GWO and the traditional particle swarm (PSO). The population size of the 
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three algorithms is 50, the maximum number of iterations is 500, and the learning factor 
is set as c1 = c2 = 2 in the PSO algorithm. For each algorithm, the corresponding test 
function program was run 30 times and the mean and standard deviation are recorded. 
The results are shown in Table 6. 
Table 5 Test functions 
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Figure 10 Two-dimensional feature spaces of four standard test functions, (a) sphere  
(b) Schwefel (c) Ackley (d) Griewank (see online version for colours) 
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Table 6 Test results of the three algorithms with the four test functions 

Function Algorithm Number of 
program runs Mean Standard 

deviation 
f1 PSO 30 5.759 × 10-3 1.912 × 10-3 

GWO 30 8.075 × 10-28 1.024 × 10-27 
Improved GWO 30 5.185 × 10-42 8.038 × 10-42 

f2 PSO 30 1.515 × 10-1 5.858 × 10-2 
GWO 30 9.932 × 10-7 1.440 × 10-6 

Improved GWO 30 4.557 × 10-11 7.247 × 10-11 
f3 PSO 30 1.103 6.896 × 10-1 

GWO 30 1.107 × 10-13 1.486 × 10-14 
Improved GWO 30 8.704 × 10-15 2.132 × 10-15 

f4 PSO 30 6.557 × 10-4 1.963 × 10-4 
GWO 30 7.422 × 10-3 1.554 × 10-2 

Improved GWO 30 0 0 

It is seen that the improved GWO algorithm can converge closely to the optimal solution 
for the Sphere, Schwefel, Ackley, and Griewank functions, and wherein for the Griewank 
function the accuracy is the highest. For the four test functions, the improved GWO 
algorithm has the smallest mean value and standard deviation compared with the other 
two algorithms, and thereby the accuracy and robustness of the algorithm are verified. 

Figure 11 to Figure 14 show the evolutionary convergence curves of the three 
algorithms for the four test functions. It is obvious that for most of the test functions, both 
the GWO algorithm and the improved GWO algorithm are much more advantageous than 
the classical PSO algorithm which is easy to fall into the local optimum. Furthermore, the 
convergence speed of the improved GWO algorithm is slightly faster than that of the 
GWO algorithm in general, and the accuracy of the improved GWO algorithm is also 
slightly higher than the GWO algorithm especially for the Griewank function as shown in 
Figure 13. Overall, the performance of the improved GWO algorithm is better than the 
classical PSO algorithm and the standard GWO algorithm. 

Figure 11 Evolution convergence curves of the three algorithms for the sphere function 
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Figure 12 Evolution convergence curve of the three algorithms for the Schwefel function  
(see online version for colours) 
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Figure 13 Evolution convergence curve of the three algorithms for the Ackley function  
(see online version for colours) 
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Figure 14 Evolution convergence curve of the three algorithms for the Griewank function  
(see online version for colours) 
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5 Optimisation of body frame orienting frontal crashworthiness 

5.1 Deterministic optimisation based on the improved GWO algorithm 

Based on the dimensions of the driving area recommended in ‘interior dimensions of 
passenger cars’ (National Standard of China GB/T13053-2008), the intrusion of the three 
design variables is constrained. By maximising the energy absorption and thus enhancing 
the frontal crashworthiness performance, the driver’s living space is expected to be 
increased and the raise of the mass of the optimised area can be limited. The deterministic 
optimisation mathematical model is expressed as: 

( )T
1 2 3 4 5

1 2

3

Find , , , ,
Min ( )

( ) 450, ( ) 390,
s.t. ( ) 290, ( ) 89,

, 1,2, ,5L i U

x x x x x
E

I I
I M
x x x i

=
−

≤ ≤
 ≤ ≤
 ≤ ≤ = 

x
x

x x
x x

 (21) 

where xL and xU represent the lower and upper bound of the design variables with the 
value of 1 and 10, respectively. The optimisation results for the deterministic 
optimisation based on the GWO algorithm and the improved GWO algorithm are 
presented in Figure 15. It can be seen that the improved GWO algorithm is superior to the 
classic GWO algorithm in both convergence speed and global optimisation. The 
comparison of the performance before and after optimisation by the two algorithms is 
shown in Table 7. It is revealed that the total internal energy absorption energy E and the 
intrusion amount I1 are greatly improved, and the performance of the other three 
optimisation responses can also be improved to some extent. In addition, by comparing 
the performance of optimisation between the two algorithms, in general, more 
enhancement in performance can be found by the improved GWO algorithm than the 
GWO before improvement especially for the metrics E and I1, though some declines in 
performances of the two metrics I3 and M appear. 

Figure 15 Optimisation results of the classic GWO and the improved GWO algorithms  
(see online version for colours) 
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Table 7 Performance comparison before and after optimisation by GWO and the improved 
GWO algorithms 

Optimisation 
response 

Initial 
value 

Optimised 
value by GWO 

Enhancement 
by GWO 

Optimised value 
by the improved 

GWO 

Enhancement by 
the improved 

GWO 
E(J) 63,128 63,167 0.06% 67,041 6.20% 
I1(mm) 452.79 443.48 2.06% 428.89 5.28% 
I2(mm) 392.38 388.98 0.87% 388.29 1.04% 
I3(mm) 297.11 283.20 4.68% 289.53 2.55% 
M(kg) 89.35 88.28 1.20% 88.52 0.93% 

5.2 Reliability optimisation based on MCS 

Considering the complexity and uncertainty in actual situations, such as driving 
operation, road environment, loading condition, impact load in collision, etc., the 
reliability optimisation is to be executed after deterministic optimisation based on the 
MCS method (Chen et al., 2020). Figure 16 and Figure 17 respectively illustrates the 
principle of reliability optimisation and Monte Carlo sampling. 

MCS as a stochastic simulation method based on probability and statistical theory is 
advantageous in simplicity of calculation and accuracy of results, but it requires a large 
number of repeated sampling calculations, resulting the low computing efficiency. 
Considering the influence of the uncertain factors in practical situations, the five design 
variables obtained by the deterministic optimisation are further assumed to follow the 
normal distribution, and the coefficient of variation is 1% (Gu et al., 2013). For each 
design variable, 10,000 sample points are collected and are brought into the response 
surface surrogate model to calculate the corresponding optimal response. Then, the 
reliability of each response (as shown in Table 8) is obtained based on the proportion of 
optimal responses that satisfy the constraints in the total number. 

Figure 16 Principle of reliability optimisation 
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Figure 17 Principle of Monte Carlo sampling (see online version for colours) 
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Table 8 Reliability analysis for the deterministic optimisation 

Response and constraints 
Deterministic optimisation 

Optimal solution Reliability 
I1 ≤ 450 mm 428.89 100% 
I2 ≤ 390 mm 388.29 89.30% 
I3 ≤ 290 mm 289.53 63.55% 
M ≤ 89 kg 88.52 100% 

It can be seen from Table 7 that the reliability of the optimised responses I2 and I3 are 
only 89.30% and 63.55%. The reliability is less than 90%, which means that the optimal 
solution of the deterministic optimisation design is extremely unstable. When the 
uncertainty is considered, the optimisation response would be easy to exceed the 
constraints. Therefore, it is necessary to execute reliability optimisation on the basis of 
deterministic optimisation. The mathematical model of reliability optimisation is 
formulated as follows: 
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 (22) 

where R is valued at 90%, 95% and 99% respectively to evaluate the influence of 
different reliability on the optimisation results, that is, the probability that the constraints 
violate the boundary under uncertain factors is 10%, 5% and 1%, respectively. 
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Here, the reliability optimisation is also performed by the method of MCS. The 
solutions that meet the reliability conditions are sampled and then the final solutions that 
meet the specified value of reliability can be obtained. Ultimately, the improved GWO 
algorithm is employed to search the optimal solution. The flow chart of the overall 
reliability optimisation is illustrated by Figure 18. 

Figure 18 Reliability optimisation flow chart (see online version for colours) 
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The target response values obtained by the three reliability optimisations are 65275J, 
66053J and 64187J, which are slightly smaller than the deterministic optimal solution. It 
means that for the reliability optimisation, with the increasing of the reliability value, the 
optimisation performance of some target extreme values would be sacrificed to obtain a 
compromise solution that satisfies the reliability. Seen from the reliability optimisation 
results listed in Table 9, it is observed that with the increasing of reliability, each 
response gradually moves away from the constraint boundary, and the obtained results 
are in line with the expectations. To achieve the highest total internal energy absorption 
of the objective function value, 95% reliability is chosen as the final optimisation scheme 
in this study. 

Table 10 illustrates the optimised results of the five design variables, including the 
results of deterministic optimisation and 95% reliability optimisation. It can be observed 
that design variable x1 changes little before and after optimisation, and both the variable 
x2 and x4 have decreased after optimisation, while x3 and x5 both have increased. 
Therefore, it can be concluded that the changes between the design variables in the 
optimisation present a compromise characteristics, which is consistent with the 
expectations. 

In Table 10, the optimised values of the design variables are rounded for the actual 
manufacturing requirement. The influence of the rounded values on the reliability of 
optimisation is evaluated and shown in Table 11. It can be seen that for the deterministic 
optimisation, the reliability of the optimisation responses I2 and I3 declines after the 
optimised values being rounded comparing with the corresponding reliability result in 
Table 8. While for the reliability optimisation, the reliability for I3 and I4 declines and 
rises respectively comparing with the corresponding result of the case of 95% reliability 
optimisation in Table 9. That is, the rounded values do have some effect on the reliability, 
but it is still acceptable since the difference is relatively small. 
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Table 9 Reliability optimisation results 

Response 
and 
constraints 

90% reliability 
optimisation  95% reliability 

optimisation  99% reliability 
optimisation 

Mathematical 
expectation Reliability  Mathematical 

expectation Reliability  Mathematical 
expectation Reliability 

I1 ≤ 450 mm 442.93 100%  434.06 100%  439.75 100% 
I2 ≤ 390 mm 388.75 94.77%  381.04 100%  388.35 99.99% 
I3 ≤2 90 mm 288.48 100%  286.83 99.42%  284.90 100% 
M ≤ 89 kg 88.65 100%  88.77 97.75%  88.60 99.72% 

Table 10 Comparison of design variables before and after optimisation 

Design 
variable 

Initialising 
value(mm) 

Deterministic optimisation(mm)  Reliability optimisation(mm) 
Optimisation 

value 
Rounded 

value  Optimisation 
value 

Rounded 
value 

x1 1.5 1.506 1.5  1.413 1.4 

x2 1.5 1.0 1.0  1.0 1.0 

x3 1.5 2.054 2.1  2.096 2.1 

x4 2.0 1.746 1.7  1.736 1.7 

x5 1.0 1.680 1.7  1.576 1.6 

Table 11 Reliability of optimisation by the rounded variable values 

Performance 
constraints 

Deterministic optimisation (mm)  Reliability optimisation (mm) 
Mathematical 
expectation Reliability  Mathematical 

expectation Reliability 

I1 ≤ 450 mm 427.71 100%  432.66 100% 
I2 ≤ 390 mm 388.58 83.4%  382.75 100% 
I3 ≤ 290 mm 292.52 23.0%  288.06 94.53% 
M ≤ 89 kg 88.32 100%  88.54 100% 

6 Crashworthiness analysis before and after optimisation 

To further evaluate the optimisation effect, a group of finite element analysis is 
conducted with the reliability optimisation results, and the displacement contour plots of 
frontal collision before and after optimisation are obtained, which are shown in  
Figure 19. It is observed that though the reliability optimisation results are relatively 
conservative, the collision safety is significantly improved. Figure 20 shows the intrusion 
at the three measurement points during the collision. 

Note that during the collision the intrusions at the three measuring points all rise first 
and tend to be roughly stable finally. The measurement point I2 located at the front of the 
cockpit, and the measuring point I3 located at the rear of the cockpit are both subjected to 
a relatively long-duration deformation, where the intrusions have kept increasing for 
about 50ms. It is mainly attributed to the large potential and space of deformation of the 
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components and structures around the two measuring points. While for the measuring 
point I1 located in the centre of the steering wheel, the duration time of deformation is 
relatively short and the time of increasing of intrusion is about 40ms. Furthermore, the 
maximum intrusion I1, I2 and I3 is reduced from 452.8mm to 434.1mm, from 392.4mm to 
381.0mm, and from 318.4mm to 286.8mm, respectively. That is intrusions at the three 
measurement points after optimisation are significantly reduced, and thus the driver’s 
living space is expected to be considerably improved. 

In addition, it can also be found in Figure 20 that the intrusion I1 for the reliability 
optimisation is slightly larger than that of the deterministic optimisation, but is smaller 
than that of the original design. For the intrusions I2 and I3, the amount of the reliability 
optimisation is smaller than that of the deterministic optimisation. From the comparison 
of the total internal energy absorption of the optimising design region shown in  
Figure 21, it can be found that both deterministic optimisation and reliability optimisation 
can make the obtained target value more optimal. Additionally, higher reliability 
requirements will reduce the extreme value of the objective function. After the reliability 
optimisation, the total internal energy absorption increases from 63128J to 66053J with 
an increment of 4.63%, and the performance of crashworthiness safety is considerably 
enhanced. 

Figure 19 Displacement contour plots of frontal collision before and after optimisation,  
(a) original design (b) deterministic optimisation (c) reliability optimisation (see online 
version for colours) 
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Figure 20 Comparison of the intrusions at the three measurement point (see online version  
for colours) 
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Figure 21 Comparison of the total internal energy absorption in the area of optimisation  
(see online version for colours) 
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7 Conclusions 

Crashworthiness has always been an important part of the research on the safety of the 
commercial bus. To improve the performance of frontal crashworthiness, a reliability 
design method based on the improved grey wolf algorithm combined with MCS is 
proposed in this paper. By leveraging the Tent chaotic map to generate the initial 
population and utilising the Sigmoid function to improve the convergence factor, the grey 
wolf algorithm is improved and applied to the design optimisation of the body frame of 
an electric bus in this paper. After obtaining the deterministic optimal solution, the 
reliability of the response results is evaluated by combining it with the MCS method. 
Then, under the corresponding reliability requirements, the mathematical expectation of 
each response is derived, and then the reliability optimisation variables are obtained by 
the improved GWO algorithm. 

The results reveal that, on the one hand, the improvement in convergence speed and 
searching of optimal solution by the improved GWO is obvious compared with the GWO 
algorithm. On the other hand, although the reliability-optimised design scheme tends to 
be conservative, compared with the initial scheme, the performance of frontal 
crashworthiness of the bus body frame is still improved, and thereby the feasibility of the 
optimised design scheme in this paper is verified. Unfortunately, the reliability results 
given by the surrogate model in this work have not been verified by the FE model, and 
thus we are uncertain how accurate the reliability results would be at the current stage. 
This will be done in our subsequent research work. 
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