

International Journal of High Performance Systems
Architecture

ISSN online: 1751-6536 - ISSN print: 1751-6528
https://www.inderscience.com/ijhpsa

MPSoC design and implementation using microblaze soft core
processor architecture for faster execution of arithmetic
application

Prashant S. Titare, D.G. Khairnar

DOI: 10.1504/IJHPSA.2023.10053187

Article History:
Received: 19 April 2022
Accepted: 01 October 2022
Published online: 06 April 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijhpsa
https://dx.doi.org/10.1504/IJHPSA.2023.10053187
http://www.tcpdf.org

156 Int. J. High Performance Systems Architecture, Vol. 11, No. 3, 2023

Copyright © 2023 Inderscience Enterprises Ltd.

MPSoC design and implementation using microblaze
soft core processor architecture for faster execution
of arithmetic application

Prashant S. Titare* and D.G. Khairnar
E&TC Department,
D Y Patil College of Engineering,
Akurdi, Pune, 411044, India
Email: pstitare@dypcoeakurdi.ac.in
Email: dgk@ee.iitb.ac.in
*Corresponding author

Abstract: The research paper presents the design methodology with novel task distribution
technique on multi-processor system on chip (MPSoC) for speeding up the execution of
arithmetic application. Utilisation of multiple soft core processors on field programmable gate
array (FPGA) reduces the overload of adding external hardware to a system. Parallel processing
of soft core processor with proposed task distribution technique makes any application to execute
at faster rate. This task distribution based speed enhancement technique for arithmetic application
is very feasible and appealing to the modern applications like neural networks, fuzzy logic,
algorithms of machine learning etc. Experimentation on such architecture with arithmetic
application shows significant increase in speed of operation with respect to conventional design.
This is implemented using Microblaze soft core processor architecture on Xilinx Virtex 5 FPGA
board.

Keywords: multiprocessors; soft core processor architecture; embedded systems; VLSI; versions
like ultra large; MPSoC; multi-processor system on chip; parallel processing; FPGA; field
programmable gate array; high performance; speed enhancement; arithmetic application.

Reference to this paper should be made as follows: Titare, P.S. and Khairnar, D.G. (2023)
‘MPSoC design and implementation using microblaze soft core processor architecture for faster
execution of arithmetic application’, Int. J. High Performance Systems Architecture, Vol. 11,
No. 3, pp.156–168.

Biographical notes: Prashant S. Titare is a Research Scholar, working under the Research
Centre DYPCOE, Akurdi, Pune, affiliated to Savitribai Phule Pune University (SPPU),
Pune-Maharashtra, India. He has completed his Mtech in VLSI design and pursuing PhD
research work on MPSoC and Embedded Systems.

D.G. Khairnar received his BE from University-of-Pune, MTech and PhD from IIT-Powai-
Bombay, India. From 1994-to-1996 he was R&D Engineer in Specialty-Metals Ltd, Pune. From
1999-to-2000, he was Research-Assistant at IIT, Bombay, India. He was session Chair for 4th
International Conference (ITNG’07), Las-Vegas, USA. He was Technical Committee Member in
5thITNG-2008, USA. He completed Technical Program conducted by AICTE & British Council
under UK India Education and Research Initiative (UKIERI-Phase-III) in 2018–2019. His
research interests are in digital-signal-processing, neural-networks, internet-of-things, wireless-
sensor-networking and VLSI. Presently he is Head-of-Department and as PhD Research-Guide at
DYPCOE, Pune under Savitribai-Phule-Pune-University, India.

1 Introduction
Embedded systems are the systems performing specific task
in stipulated time. The performance of embedded
application in particular time deadline expects task to
execute at faster rate. Also, the very large scale integration
(VLSI) technology and its further versions like ultra large
scale integration (ULSI) and nanotechnology shows that the
amount of area available for particular logic will keep on

reducing. Miniature through VLSI and embedded
application demand for electronic system to work in faster
manner without contributing additional area to the hardware
motivates to design the multi-processor system. Most of the
embedded devices right from cellular phones, satellites to
household appliances like refrigerators, high definition
television (HDTV), washing machine etc. are expecting
faster execution of tasks. This can be definitely
accomplished by using multi-processor system. The paper

 MPSoC design and implementation using microblaze soft core processor architecture 157

contributes in designing of such multi-processor system
which improves the execution speed of an application.

Multi-processor systems are the parallel computing
processors designed to reduce workload on central or main
processor. System can be made multi-processor either by
adding hard core processors or by adding soft core
processors. Hard core processor addition increases the
silicon area on hardware wafer, but the soft core processor
can be added or reconfigured without adding external
hardware unit in existing system. Soft core configuration is
just utilising the number of soft cores within the system. It
is because of reconfigurable system like FPGA used for
implementation of any application has soft cores available
in it. Considering the prototyping level of FPGA, it will
have the number of soft cores present in it. Utilising all the
existing soft cores is preferred in this proposed technique.
More the number of soft cores configured, more tasks can
be mapped to it and accordingly more parallelism can be
obtained. Such technique is used in proposed method
presented in this paper. However, the limitation on utilising
the number of soft core processor is the total amount of
memory available on board (Lien et al., 2007). Thus for a
particular FPGA there is a limitation of number of soft core
processors to be used. Hence, an appropriate selection of
board and number of soft core processors on it can solve the
issue related to multi-processing. The paper presents such
soft core based architecture with novel task mapping
technique to improve performance in the form of speed,
which is explained from Section 6 onwards.

Initially, embedded system architecture were preferred
as simple controlling systems for explicit application. These
system demands for faster speed of execution without
consuming more amount of power in order to execute the
modern requirement of application, like encoding or
decoding of audio or video information, image processing,
etc. and therefore, the multiprocessor system on a chip
(MPSoC) is one of the solution to deal with such escalating
computational needs (Huerta et al., 2005; Tero et al., 2006;
Wolf et al., 2008; Wolf, 2004).

An MPSoC is a multi-processor on a single silicon-chip
which may include about two or more number of Processor-
Memory Modules (PMM). Considering the 10 PMM, if the
memory modules are grouped together into a single first
level cache (L1) that is shared between all the available
cores then it is termed as a multi-core processor. The term
multi-core architecture is used if two or more number of
cores is developed on the chips that are interconnected
together by appropriate resources (Lien et al., 2007; Cesario
et al., 2002; Chandra et al., 2007; Titare et al., 2020).

Recent technologies are demanding such MPSoC
architecture based approach for faster execution of
application. Faster speed along with efficiency is the
ultimate requirement of embedded consumers. All these
necessities are possible in small integrated chips through
MPSoC.

Thus MPSoC have emerged as an important class in the
field of micro-electronics and VLSI. MPSoC shows an
absolute method to incorporate multiple processing cores on

a single silicon chip. It is promising to recognise following
five major steps for proper designing of an MPSoC:

a to develop an application

b to configure platform accurately

c to program a code

d to map an application on to the platform

e to debug.

Most of the MPSoC development work is centred at one of
the steps like platform configuration or application
mapping. Also instruction set architecture (ISA) based
system design approach is preferred for some MPSoC
systems (Huerta et al., 2005; Titare et al., 2020).

According to the system architecture model, MPSoC are
classified as Homogeneous and Heterogeneous. The
Homogeneous MPSoC has processors of similar
architecture while Heterogeneous type has different
processor architecture on same platform (Lahiri et al.,
2004). This research paper provides a design and
implementation of homogeneous MPSoC system
architecture using Microblaze soft core processor.

Designing of such MPSoC architecture with soft core
processors is presented in this paper. Also the task mapping
approach to respective soft core processors is illustrated in
this research paper which shows significant improvement in
speed of execution of arithmetic application. Different
arithmetic algorithms are used in industrial applications like
decision based self-automated Conveyor belt, temperature
monitoring of industrial furnaces, etc. and embedded
products like heart-rate monitoring in smart gadgets, etc.
Computing such algorithms at faster rate is the demand of
the current digital world. The proposed MPSoC approach
shows how the desired results can be obtained at faster rate.
Hence it reduces the total time consumption for any
mathematical operation. Here, the arithmetic application
based tasks are used for computations. If the mathematical
operation speed is improved then automatically it improves
the computational speed of the application. Therefore using
the methodology elaborated in this research paper makes the
embedded devices to work faster and to provide required
output at the earliest. Thus the proposed method contributes
in speed improvement of digital applications.

This paper is framed in following sequence, Section 2:
explains the Soft core processor architecture used in
MPSoC along with its feature; Section 3: elaborates the
Communication architecture to be preferred while selecting
MPSoC network; Section 4: describes the MPSoC
Architecture and its features; Section 5: shares the
information related to different types of Communication
topologies; Section 6: explains the different mapping
techniques available for MPSoC and the proposed mapping
technique; Section 7: explains the complete system design
using all the previous section parameters; Section 8: shows
different Results and Analysis of an application using
proposed techniques and the paper concludes in Section 9.
Sections 2–5 is included here in order to explain the

158 P.S. Titare and D.G. Khairnar

different parts involved or selected in the design of
proposed technique on MPSoC architecture. The importance
of each part of architecture is elaborated here in these
sections.

Designing MPSoC using soft core does not add any
physical area to the system. Hence soft core approach is
preferred. There are different soft core processors available
as per (Titare et al., 2020) explored in Section 2.

2 Soft core processor architecture

• Microblaze soft core processor

The embedded processor named Microblaze is a 32-bit
reduced instruction set computer (RISC) soft core optimised
for implementation on Xilinx Field Programmable Gate
Array (FPGA), as shown in Figure 1 (Xilinx.com 2020;
Tong and Anderson, 2006).

The Microblaze processor is exceedingly configurable,
as it allows selecting a definite set of features required by
design. Hence such soft core processor type is selected for
the implementation of proposed application. Such features
help MPSoC design to be reconfigurable. Microblaze being
a Harvard architecture, it implicates that it has different
interfacing units for data bus and instruction bus access.
Picoblaze is 8 bit soft core processor, so instead of that 32
bit Microblaze is preferred as a 32 bit instruction set.

Each bus unit is further divided into a local memory bus
(LMB) and on-chip peripheral bus (OPB). LMB provides an
access to on-chip dual port block RAM. On-chip and off-
chip memory and peripherals, both are interfaced using
OPB. The Microblaze core also facilitates with 8 input and
8 output interfaces to the fast simplex link (FSL) buses.
These FSL buses are unidirectional dedicated
communication channels, detail explanation is in Section 3
(Huerta et al., 2005; Xilinx.com, 2020; Tong and Anderson,
2006; Titare et al., 2020). Microblaze is a soft core
processor specifically designed for Xilinx FPGAs.

Figure 1 Microblaze soft core architecture

Source: Xilinx.com (2020)

There are different types of soft core processors available
like 8 bit Picoblaze from Xilinx, NIOS II from Altera, Leon
by Gaisler research and Xtensa series from Tensilica
(Gaissler et al., 2005; Titare et al., 2020). Leon3 supports
maximum operating frequency of around 400 MHz by using
Application Specific Integrated Circuit (ASIC)
implementation while Microblaze and NIOS-II has
200 MHz on their respective FPGA platform. However,
Xtensa has the highest design flexibility since unlimited
custom instructions and execution units can be implemented
on the processor’s core (Xilinx: XAPP529, 2004; Xilinx
White Paper, 2007; Gaissler, 2005; Titare et al., 2020).
Hence, based on application requirement, soft core
processor needs to be selected. In order to interface such
processors network, a communication medium is required
between such soft core processors. So, communication
architecture is presented in further Section 3.

3 Communication architecture

• Fast simplex link (FSL) overview

FSL buses are used as a communication link between
Microblaze cores. Microblaze has eight input and eight
output FSL interfaces. These FSL channels are dedicated,
unidirectional, point-to-point data streaming interfaces.

The width of FSL interface is 32 bits. Data and control
words can be exchanged through FSL channel. The FSL
interface can have maximum speed up to 300 MB/sec
depending on the target device.

The FSL bus system is an ideal choice for inter
processor communication (like Microblaze processor to
another Microblaze processor) or Input-Output streaming
communications (Xilinx.com Logicore IP, 2018; Ryu et al.,
2004).

The features of the FSL bus interface are:

• unidirectional and Non-arbitrated communication

• dedicated, point-to-point communication

• support for data and instruction communication

• 600 MHz standalone operation

• configurable data size

• first-in, first-out (FIFO) based communication (Huerta
et al., 2005; Xilinx.com Logicore IP, 2018).

One Master drives FSL bus and in turn FSL drives one
Slave. Figure 2 signifies the working principle of the FSL
bus system and its signals (referred from Xilinx LogicoreIP
datasheet). FSL link allows data transfer through group of
macro supported by Xilinx EDK (Embedded Development
Kit). Reading and writing of FSL allows communication
between processors (Lien et al., 2007; Huerta et al., 2005;

 MPSoC design and implementation using microblaze soft core processor architecture 159

Zeferino et al., 2002; Titare et al., 2020; Brandstatter et al.,
2014).

Communication architecture like FSL helps to
interconnect soft core. The dedicated connections between
cores ensure that data transition delay is less. Such
communication link of FSL is used in the proposed method
as it helps to interconnect soft core with dedicated
connection. As the work is more concentrated on speed of
execution of application, the propagation delay in
communication link should be minimum. Hence, such
dedicated connection of FSL is preferred in designing of
MPSoC. Developing architecture with multiple processors
and interfacing it using communication link is termed as
MPSoC, as explained further in Section 4.

Figure 2 FSL bus signal

Source: Xilinx.com logicoreIP (2018)

4 MPSoC architecture
VLSI, the branch of microelectronics starts evolving since
1990. The single processor technique developed for an
embedded system provides application from communication
domain, networking domain, etc. However, multimedia
application requires system having multiple processors to
compute the given task in shorter stipulated time as
compared to single processor time.

Figure 3 Block diagram of MPSoC architecture

Source: Wolf et al. (2008)

Processors involved in multiple processing systems should
have the capacity of parallel programming to improve its
performance. Very long instruction word (VLIW) based
processors are the example for the same, having parallelism
approach for the execution of a task (Ryu et al., 2002).
Digital signal processing (DSP) processors used in smart
phones for signal processing purpose is also executing
parallel processing of instructions. On the other hand, ASIC
architecture has specific blocks and is not preferred for the

design of general purpose application. Following block
diagram shown in Figure 3 corresponds to multiple
processor architecture.

MPSoC architecture includes multiple processors which
collectively has central processing unit (CPU) and memory
together, to control all the peripherals (I/O or Input/Output
devices) over a network. Memory sharing, data transfer and
interconnection are main concern of multi-processing
system. Almasi and Gottlieb et al. defined multiprocessors
as parallel processing elements that collectively cooperate
and communicate to compute complex problem at faster
rate (Almasi and Gottlieb et al., 1989; Sabry et al., 2014;
Selvameena et al., 2017).

Designing an environment for MPSoC architecture
comprise of CPU, cache memory, I/O units and memory
interface, as shown in Figure 3. CPU interconnection
supports higher level of component integration which will
reduce the design area and design time that too without
sufficient loss in efficiency. MPSoC environment can be
designed with hardware-software co-design, including
synthesisable hardware interfaces, hardware accelerators,
operating systems (OS) and device drivers. All these units
are controlled by OS and application programming interface
(API) (Cesario et al., 2002; Ali et al., 2018; Iturbe et al.,
2013; Gohringer et al., 2011). This MPSoC will be used as a
platform to develop the proposed design methodology with
novel technique in this paper.

Communication networks and soft core study inference
to choose FSL and Microblaze as more compatible soft
core architecture. Thus, all the above mentioned units along
with communication link (like FSL for Microblaze)
complete the MPSoC architecture. Subsequent Section 5
will elaborate on methods to interconnect multiple
processors in a network.

5 Communication technologies
Multiple processors can be inter-connected to each other
using different topologies. Selection of topology depends on
the type of soft core to be used. Some of the network
topology used for connecting various processors (CPU) in a
cluster through the FSL link for point-to-point data transfers
is discussed as follows: (Huerta et al., 2005; Titare et al.,
2020)

Bus topology: In this topology, all the computers are
interconnected using a single line through trans-receivers, as
shown in Figure 4. All lines should be closed with matched
termination. Speed of operation and network performance
depends on the number of CPU available on a network. If
one CPU transmits a message, then rest all the CPU will be
waiting to transmit their data. At a time only one can send
data.

The complete communication network will fail if there
is even a single break in the main line. Such bus networks
are also called passive topology as the computers or CPU on
the bus only responds (or listens) to data transmitted. They
do not transfer data from CPU to CPU.

160 P.S. Titare and D.G. Khairnar

Figure 4 Bus network

Hierarchical bus network: It is also termed as split-bus
architecture. It is a network that connects two or more buses
using Bus Bridge, as displayed in Figure 5. This bus bridge
is a controllable connection point, which when enabled
makes the connection otherwise disconnect it.

Figure 5 Hierarchical bus network

Ring topology: A network in which one CPU is connected
to next CPU, in continuous manner and in turn last CPU is
connected to first CPU, forming a ring pattern. Its symbolic
representation is shown in Figure 6. The data is transferred
from one node (CPU) to another until it reaches the last
destination node present in a network. The main drawback
of this topology is that the data propagation delay will be
longer if transmitting CPU and receiving CPU are present at
longer distance in a ring. More the number of nodes, longer
will be the propagation delay. However, it has the advantage
lesser circuit complexity as the number of interconnections
is less.

Figure 6 Ring network

Mesh network: It is a network where each and every node
(CPU) is interconnected to each other, demonstrated in
Figure 7. This type of topology has the least travelling time
for data transfer between any nodes over a network. This is
because of direct connection between transmitting node and
receiving node.

Figure 7 Mesh network

The major drawback of such topology is that the circuit
complexity increases as the number of interconnection
increases due to increase in the number of nodes in a
network.

Star topology or network: This topology has a central node
connected to each and every node present in a network. Its
structure seems to be like a star (as shown in Figure 8) and
hence the name. One centralised controlled called Master
CPU and multiple slave type of configuration can be
achieved in such topology.

Due to master slave architecture, central CPU decides
which task has to be allocated to which CPU, and can also
collect results from all these CPU. The main drawback is if
the central node fails, then entire control is lost and the
complete system fails. As all the operations are regulated
through central node, then communication bottleneck can
occur for the large bulk of data operations.

Figure 8 Star network

Multi-Star network can be created by grouping individual
star network. The central star network is responsible for
control of multiple star networks attached to it (Othman et
al., 2012; Piscitelli et al., 2011).

All these topologies have some advantages and
disadvantages. Depending on the application requirements,
a particular type of topology can be selected and mapped on
MPSoC. Novelty of this research paper lies with the
mapping of tasks. This technique along with the
development of MPSoC is explained in forthcoming
Sections 6 and 7.

6 Mapping for MPSoC
Mapping of tasks for MPSoC means tasks can be mapped to
different CPU as per the topology selected. Previous
literature shows the availability of multiple task mapping
algorithms (Chen et al., 2011; Wang et al., 2013). However,
the proper approach has to be followed while mapping the
tasks on MPSoC. Different types of approach for task
mapping are mentioned below which are classified on the
basis of timing instants when these tasks are mapped:

• During design time: If the static or offline mapping
approach is preferred then MPSoC resources can be
explored at better level using complex process.
The only major issue with static mapping is to handle
dynamic tasks

 MPSoC design and implementation using microblaze soft core processor architecture 161

• During run time: the dynamic or also called online
mapping approach needs simple but faster processes as
it is handling application when it is in execution mode.

There are two different dynamic mapping approaches for
designing an MPSoC, as mentioned below:

• Mapping with resources reservation: This method helps
to verify whether enough MPSoC resources are
available or not before mapping their respective
application tasks on system.

• Mapping without resources reservation: This approach
helps to map the initial task of the application keeping
the remaining tasks in waiting state. Task belonging to
wait-state are mapped whenever required. Hence, in
this case, application execution will start faster, but
may wait for other resources to get into ready state.

Run time mapping of tasks in MPSoC is a need for the
dynamic mapping approach. Such mapping can be
controlled using:

• Centralised: One processing element will be
centralised, which will control, regulate and combine
the mapping process. This central (or single) master
will manage the mapping of resources. Due to single
centralised control, bottleneck is observed with respect
to scalability and performance.

• Distributed: Multi-master or multi-cluster approach is
preferred. One processing element in each network or
in each cluster is responsible for mapping of tasks. It is
complicated but better approach with respect to
performance and speed (Mandelli et al., 2011).

In addition to use such mapping of tasks, the proposed
technique of mapping based on percentage of RAM
available with respect to look up table (LUT) available, is to
be used.

Comparing with the previous work done by researchers
with respect to task mapping, as explained above, proposed
method is classified under Distributed dynamic mapping
technique. As presented in Sections 7 and 8 the mapping of
task based on Block RAM (BRAM) shows the improvement
in speed of operation. In order to demonstrate this
experimentation, multiple mathematical algorithms were
implemented. Some of the arithmetic application is
explained with this novel technique of task mapping in
further sections.

Consequently, such mapping of tasks on MPSoC with
communication link forms the complete system as discussed
in further section. This Section 7 presents the design and
development of MPSoC as per arithmetic application
requirement.

7 The complete system architecture
MPSoC system is collectively a combination of multiple
processing cores, having tasks mapped onto it with the
respective algorithms. These cores are interconnected to

each other using communication link like FSL, depending
on the type of FPGA. A single processor system on a chip
(SPSoC) consists of one CPU, program and data memory,
timer and an application based peripheral. The major
difference between SPSoC and MPSoC is that in MPSoC,
the number of CPU is not limited to one (Anjam et al.,
2010; Nikolov et al., 2007; Beltrame et al., 2008).

Depending on an application requirement, program or
data memory can be configured. Additional program
memory can be used to operate them in parallel. So, MPSoC
provides an advantage of speed through parallelism, thus
improves the overall performance (Lien et al., 2007; Huerta
et al., 2005; Titare et al., 2020).

MPSoC is defined as group of 2 or more number of
processors developed on system on chip (SoC). Hence, the
system designed here is of dual processor system. System
with more number of processors connected using topology
like ring and star is implemented. Star topology based five
soft core MPSoC system is developed and demonstrated in
Section 8. Dual processor system is developed using Xilinx
XPS EDK tool (Xilinx Platform Studio and Embedded
Development Kit) (Kangas et al., 2006; Xilinx White Paper,
2007; Xilinx.com EDK, 2018).

Memory units, clocking circuitry and peripherals are
interfaced with Microblaze soft core processor using FSL
communication link, as shown in Figure 9. The diagram
represented in Figures 3 and 9 are almost similar. Figure 3
is symbolic representation of multiple soft core processors
connected using FSL bus. While Figure 9 indicates the
experimental representation of Figure 3, which is generated
after the simulation and synthesis process is completed in
Xilinx tool. From Figure 9, black coloured block represents
soft core processor connecting to RAM memory using blue
coloured LMB bus. Purple coloured bus connects the
processors with Microblaze debug module and brown
coloured bus connects processor with peripherals.
Additionally the blocks like mailbox and mutex is used for
inter task communication and synchronous purpose. The red
coloured horizontal block indicates Microprocessor
Microcontroller Module interface interconnecting the
system with external system.

As shown in Figure 9, MPSoC is implemented using
mathematical algorithms by distributing entire logic in the
form of tasks to different soft core processors. Task
mapping to each processor is done using the proposed
technique of Computational compatibility ratio, as
explained further. Such tasks are distributed to both the
processor for parallel execution. Proposed work is having
distribution of tasks to different processors based on
percentage of RAM available with respect to LUT available
with that soft core processor. The technique used to
distribute tasks is shown in Table 1.

Table 1 Percentage of LUT and RAM available for dual
processor system

Processor no. % RAM available % LUT available
P1 14% 21%
P2 13% 18%

162 P.S. Titare and D.G. Khairnar

Figure 9 Dual processor system (representing multi-processor system) architecture (see online version for colours)

Table 1 is showing the details about the amount of LUT and
RAM used by processor for the arithmetic application. P1
and P2 are Microblaze soft core processors with distinct
memory size for Block RAM. Based on this table, as the
percentage of RAM and LUT available is more, processor
computing any task in faster manner can be decided. Ratio
for processor P1 is 14/21 = 0.6667 and for processor P2 is
13/18 = 0.7222. Henceforth, this RAM/LUT ratio is called
as computational capability. It means if computational
capability is more then, that processor will work at faster
rate than other processor.

Consider the example shown in Figure 9 and Table 1,
where MPSoC is designed with dual soft core processors
and with specified RAM memory distribution. This memory
distribution is performed by using different address pointer
in Addressable bus memory under Xilinx Build Support
package tool. After compiling the instance of a code, it
generates design summary which clearly specifies the LUT
available with soft cores. Now comparing this ratio of
computational capability the tasks can be mapped to
different processors. From these two processors named P1
and P2, as the P2 processor has higher computational
capability ratio, it works faster than P1 processor. This was
demonstrated and similar results were observed in multiple
examples as shown in Section 8. Hence the second instance
of code which executes immediately after the conclusion of
first, the processor having higher ratio is allotted with the
major task. Mapping this task is in similar manner of calling
functions automatically using labels. Higher is the ratio
associated with processor then accordingly the major task is

labelled to this processor. The entire execution shows that
the tasks are mapped adaptively to the processors based on
this computational capability with that processor. Therefore
the major tasks can be allotted to the processor having
higher computational capability ratio. Hence the
architecture with more number of processors, can be
classified further with their computational capability ratio
and all together improves the speed of application. Thus the
MPSoC with such technique shows significant improvement
in speed.

The results obtained using this proposed technique of
task distribution and its analysis is explained in further
section named “Results and Analysis”. Huerta et al. (2005)
have defined performance parameters named ‘Speedup’ and
‘Efficiency’ to check MPSoC performance as elaborated in
the next section. So, all together make the MPSoC to work
at faster rate.

8 Results and analysis
Result obtained for MPSoC can be evaluated using metrics
like speedup and efficiency as discussed in next sub-section.
This task distribution based speed enhancement technique
(presented in Section 7 using dual processor system) for
arithmetic application is very feasible and appealing to the
modern applications like neural networks, fuzzy logic,
algorithms of machine learning etc. Each of these
applications desires the fundamental usage of arithmetic
application. Therefore, further sub-section demonstrates

 MPSoC design and implementation using microblaze soft core processor architecture 163

execution of such arithmetic application on MPSoC. All
these applications are selected as these arithmetic
applications are most frequently used in any computations
or in arithmetic logical unit (ALU) operations. The speed
improvement observed in these applications can be achieved
through parallelism also. But in addition to parallelism if
tasks are mapped as presented earlier then the further speed
improvement is observed. To understand this, mathematical
parameter like speedup and efficiency can be used. The
further sub-sections are organised as first explaining the
parameters, then the application with proposed technique
and later the overall graphical analysis of application. The
expression of speedup and efficiency which determines the
system architecture performance is explained first. Based
on which the further applications are mapped with
these parameters. Arithmetic applications like matrix
multiplication, 32-bit multiplier and GCD computation is
performed using the proposed technique of MPSoC. Later,
the dual processor system explained in previous section is
extended with more number of processors and its analysis
is presented. Further all this application execution is
compared with conventional technique and the comparison
is presented in graphical manner.

• Speedup and efficiency

Speedup is the ratio of time taken by the single processor
(ts) to the time taken by the ‘p’ number of processor (tp)
executing in parallel for MPSoC. Ideally, this ratio should
have the number equal to the number of processor (p). It
indicates as the number of processor increases, speedup
increases.

However, speedup never remains equal to ‘p’, as there is
always a communication overhead. It means certain time is
consumed during task mapping and inter- communication,
because of which it is lower than p (Huerta et al., 2005).

Speedup = ts/tp (1)

For parallel operating processors in MPSoC, performance
can also be measured through efficiency. Efficiency is
defined as the ratio of speedup to the number of processor
(p). An ideal value of efficiency should be one (Huerta et
al., 2005).

Efficiency = speedup/p (2)

• Matrix multiplication application

The Matrix multiplication of integers and floating-point
numbers were performed by Huerta et al. (2005). An
application of matrix multiplication was tested to check the
parallel execution of the task. The demonstration involves
a technique or an algorithm for computing matrix
multiplication application.

This technique was implemented by transmitting rows
of first matrix (M1) and entire second matrix (M2) to each
processor present in a network. For example consider both
these matrices are of 2×2 in size. Same is represented in
Figure 10(a) as the data transmitted by nodes (2 slave
processors) to central node (master processor). Then each

processor computes the matrix multiplication for that
particular row and corresponding second matrix received.
Later after computation, this processor returns the result
back to main central processor acting as master processor.
Master or central processor is responsible to collect results
from each processor and produce output in desired form.
The empirical result on console window for experimentation
of matrix multiplication is demonstrated in Figure 10(b).
It clearly indicates that even if the tasks are distributed
between the processors using proposed technique still the
same result is obtained. The proposed method of task
mapping shows the same result as observed in conventional
technique.

Figure 10(a) Matrix multiplication on dual processor system
demonstrated using nodal network diagram
(see online version for colours)

Figure 10(b) Result observed for Matrix multiplication on dual
processor system (see online version for colours)

Figure 10(b) shows output obtained for 2×2 matrices.
Matrix A and matrix B are transmitted to the slave. And the
statement showing ‘Received Matrix A’ is for the
experimentation purpose to indicate that console receives
the text information from the program. Slave multiplies
each row and column, and gives the result in matrix C. Thus
value of each element will be obtained as 5×5 + 5×5 = 50.
This can also be performed if only one row of matrix A and
entire matrix B is sent to each of the slave, they will
compute the matrix multiplication and will return their
results to master. And master will display the complete
result.

Huerta et al. (2005) performed the matrix multiplication
on floating-point values as well. As compared to integer
value, the floating-point matrix multiplication consumes
more time as the information contents present in the data are
larger than the integer values. However, the time required to
transfer data will remain same. This extra time consumed in
the floating- point operation as compared to integer matrix
multiplication can be reduced using floating-point
processors.

As the processing time for floating-point multiplication
is longer, improvement in efficiency and speedup for
MPSoC is observed. However, in floating-point as well,

164 P.S. Titare and D.G. Khairnar

there will be communication overhead for the transfer of
matrix on multiple processors and collecting results back.
To overcome this problem of overhead, the common
message can be broadcasted to all the processors, was
suggested (Lien et al., 2007; Titare et al., 2020). This will
reduce the time required to transfer the same message to
each processor individually.

With respect to the previous application of matrix
multiplication, second matrix is common to all processors
and hence can be broadcasted to all the processors, as
shown in Figure 10(a). Here, broadcasting communication
time is also needs to be considered. Broadcasting common
tasks and mapping as presented earlier helps to reduce the
sufficient amount of time.

By using this application, different test can be
performed by varying different parameters like matrix size,
data types, number of processors, etc. Such tests were
performed to check the application execution time. The total
time consumption includes time taken for the collection of
data (matrix values) from memory, transferring data to each
processor, processing (multiplication) of the collected data,
the collection of results from each processor and storing
final results back to memory (Lien et al., 2007; Huerta et al.,
2005; Titare et al., 2020). Also, there is research available
based on improvement of clocking circuitry (Johnson et al.,
2017; Almeida et al., 2011; Logue et al., 2013). In addition,
the work referred in Darwish et al. (2006), Arnold et al.
(2014), Sultan et al. (2018), Aust and Richter (2012),
Stavrou et al. (2007) and Chawki et al. (2022) is based on
developing MPSoC or network on chip (NoC) using
different modelling style, different threading and task
mapping approach for different application. Comparing this
with the proposed method presented in the paper, the task
mapping is distinct and it shows approximately 6–7%
improvement in speed for those applications also.

From this it can be concluded that the results were not as
good as it could be expected since the efficiency gets
affected as the number of processors increases. However,
this effect is less than compared to speed improvement
obtained from parallelism. For example, if the matrix
multiplication by single processor takes 10 micro second
(µs) to conclude with results, then ideally dual processor
should compute it in 5 µs. But this time is more than 5 µs.
This is due to communication overhead. Time taken for
distributing the data in multiple processors and collecting it
back gets added in total time. However, due to parallelism,
the overall time consumed shows significant reduction as
compared to the single processor system.

• 32-bit-Multiplier design application

Similar arithmetic application of 32 bit multiplier can also
be executed on HyperTerminal using UART (Universal
Asynchronous Receiver Transmitter). From this Figure 11 it
can be clearly observed that multiplication of two 32 bit
numbers written in memory can be multiplied to get 64 bit
output. And this result can be read from memory using Read
address variable for that BRAM memory.

For instance, memory is written with value ‘3’ in 32 bit
word then its 32 bit multiplication result can be observed in
Read register as ‘9’ value as output. Figure 11 shows similar
results as observed in conventional system. Computational
time required for this system is reduced and same can be
observed in graph shown in Figure 14.

Figure 11 32-bit multiplier application and its execution on
UART HyperTerminal (see online version for colours)

• Greatest common divisor (GCD) computation

While using MPSoC with proposed task distribution
technique for GCD arithmetic computation, sufficient
amount of speed improvement is observed. GCD is
calculated by comparing two numbers and obtaining their
common divisor. In Dual processor system, Master takes 2
input values from user and forwards it to slave. This is
possible in programming part of the system, using Base
System Builder. While writing a program for an application,
it can be decided that which soft core processor should be
made as master and others as slave. Later, while executing
the application the module two instance of program decides
the task mapping to soft core based on RAM/LUT ratio.
These examples are divided into small tasks using program
functions. Further these functions are mapped to soft
core using ratio and accordingly they are called by
function labels. For this application of GCD, program is
written to compute GCD by taking test case values from
user. Master program stores it in variable and then transfer it
to function where the computation is calculated. The
functions are interconnected using FSL bus macro like
PUTFSL and GETFSL (which transmits and receive the
preprocessing values within the soft core processors) It
transfer the data between one soft core to other, for
example, value from one processor is transferred using
PUTFSL and the same value is received in another
processor using GETFSL. Thus the value from master can
be transferred to slave and is returned using these macros.
Master sends it to slave and slave then calculates GCD and
returns result back to master in order to display the answer
for user. This application also demonstrates that the
proposed task distribution technique is helpful for faster
execution of arithmetic application.

 MPSoC design and implementation using microblaze soft core processor architecture 165

As discussed in previous Section 7 (related to dual
processor system), similar thing is demonstrated further for
more number of processors. Results observed for such
system and its analysis is elaborated in this section. The
same dual processor system presented in previous section is
extended to five processor system to verify the proposed

mapping technique on MPSoC architecture. If five Microblaze
soft core processors are connected in star topology manner,
as shown in Figure 12, then results obtained for the same is
displayed graphically in Figure 13. The amount of RAM to
LUT ratio available with each processor helps to decide the
processor that can work at faster rate.

Figure 12 Environment for multi-processor system on chip architecture (star topology) (see online version for colours)

The reason to present graph in Figure 13(a) is to show the
similarity in result observed for different processors. As the
columns shown in Figure 13(a) is partially co-related, the
same graph is demonstrated in bar chart format in
Figure 13(b), as RAM and LUT are distinct entity. Also for
some of the arithmetic applications presented earlier the
amount of RAM utilised is approximately 14%. Hence the
ratio observed is 0.7 approximately. The resultant values
observed for ratio is in closed range (0.6–0.72) indicates
that mapping of task in such similar valued range processor
also shows significant improvement in speed. Like the
processor with computational compatibility ratio 0.72 shows
faster execution than processor with 0.68. Hence the
processor P2 having ratio value 0.72 is mapped with major
task. Therefore the speed improvement is observed in this
MPSoC system. Similarly, more the computations involved
in processor, more RAM memory will be utilised and
accordingly the ratio value will change. In such case also,
the processor having higher ratio will give faster result.
Hence such processor will be automatically mapped with
major task of computation using function call, as presented
earlier.

From this experimentation and analysis, as shown in
Figure 13(a) and (b), it is observed that processor P2 is
having higher ratio of computational capability than others.
Hence, from this it can be concluded that the task expecting
more computation is to be allotted to the processor P2, as it
is having more computational capability ratio. More the
number of processors, more will be the speed of execution
considering the tasks are correctly allocated. However if
many processors are added in the network then the task
distribution time comes into consideration which increases
the communication overhead. In addition to more number of
processors, if tasks are mapped to processor using this

computational capability ratio, then significant increase in
speed is observed as presented in Figure 14.

Figure 13(a) Graphical analysis indicating processor having
higher RAM/LUT ratio (see online version
for colours)

Figure 13(b) Bar chart indicating processor having higher
RAM/LUT Ratio (similar to Figure 13(a))
(see online version for colours)

166 P.S. Titare and D.G. Khairnar

Table 2 Percentage of speed enhancement observed in
arithmetic application

% of Speed enhancement
Arithmetic
applications Conventional Proposed

Percentage
improvement

observed

Matrix
Multiplication

23.96 31.05 7.09

32-bit
Multiplier

36.02 43.72 7.7

GCD
Computation

16.89 23.14 6.25

Table 2 displays speed improvement for the arithmetic
application and corresponding graph is demonstrated in
Figure 14.

Figure 14 Graph of speed enhancement by different applications
for Conventional method and proposed method
(see online version for colours)

All these applications are implemented on Xilinx Virtex 5
FPGA (XUPV5LXT) (Xilinx.com ML505, 2021) and the
clock rate measured through System builder function shows
the improvement in speed of execution as displayed in
Figure 14. From Table 2 and graph as shown in Figure 14,
it is observed that proposed system gives higher speed of
execution than conventional system. Results and analysis of
each and every application shows that the amount of time
consumed by conventional system is more than the
proposed system. Hence the speed enhancement is more for
proposed system. This means the proposed system will
execute an arithmetic application at faster rate than
conventional system. By measuring the difference between
the speed enhancements between these two types of system,
it implicates that 7% of speed is improved by proposed
system. For matrix multiplication, proposed system
provides 31% of speed and conventional as 24%. This 24%
of speed improvement is of Dual processor system as
compared to single processor system.

And for same dual processor system, if proposed
technique (RAM/LUT) of task mapping is used then 7%
more speed improvement is observed. Similarly, by
performing the other two applications like 32 bit multiplier
and GCD computations implicates significant improvement
of speed. Hence, the enhancement in speed of around 7% is
observed in all the three applications. This clearly indicates
that if the tasks are distributed using this proposed technique
of RAM to LUT ratio then significant improvement in speed
is observed. Similar results were obtained for LCM (Least
Common Multiple), where 54 microsecond time was
consumed by proposed technique compared to 76
microsecond of time consumed using conventional
technique. Thus the execution performance of arithmetic
application for Microblaze based MPSoC architecture is
improved.

9 Conclusion
This research work presents the design and implementation
of MPSoC architecture using soft core processors named
Microblaze for faster execution of arithmetic application.
The research paper concludes that use of soft core processor
reduces the overhead of adding extra hardware to the
system. Hence, with- out adding extra hardware to an
embedded system, tasks can be computed at faster rate. And
the utilisation of FSL link inferences that it can be preferred
for inter-communication between multiple parallel
processing processor. The selection of topology also
contributes to make system execute the task at faster rate.

By using the proposed technique, it shows that the task
having major complexity of computation should be allotted
to the processor having higher value of RAM to LUT ratio.
From results obtained for arithmetic application and its
analysis with respect to speed enhancement clearly
shows that proposed technique will save the CPU execution
time. By experimenting some of the arithmetic application,
this research paper concludes that proposed system shows
7% of speed improvement as compared to conventional
system.

Usage of these technique in other application like neural
networks, fuzzy logic, and machine learning algorithm also
shows the significant improvement in the speed of
execution.

References
Almasi, G.S. and Gottlieb, A. (1989) Highly Parallel Computing,

2nd ed., Benjamin/Cummings Publishing Co., Inc. Redwood
City, CA, USA, pp.670–678, ISBN: 0-8053-0443-6.

Almeida, G., Carara, E., Busseuil, R. and Hebert, N. (2011)
‘Predictive dynamic frequency scaling for multi-processor
system on chip’, IEEE Conference on Programmable Logic,
pp.1500–1503, Id No. 978-1-4244-9472-9.

Anjam, F., Wong, S. and Nadeem, F. (2010) A Shared
Reconfigurable VLIW Multi-Processor System, Delft,
Netherlands, IEEE, pp.1–8, ID No. 978-1-4244-6534-7/10,
ISBN: 978-1-4244-6533-0.

 MPSoC design and implementation using microblaze soft core processor architecture 167

Arnold, O. and Fettweis, G. (2014) ‘Adaptive runtime
management of heterogeneous MPSoCs: analysis,
acceleration and silicon prototype’, 2014 International
Symposium on System-on-Chip (SoC), October 2014,
Tampere, Finland, pp.1–4, doi: 10.1109/Issoc.2014.6972444.

Arpinen, T., Kukkala, P., Salminen, E., Hännikäinen, M. and
Hämäläinen, T.D. (2006) Configurable Multiprocessor
Platform with RTOS for Distributed Execution of UML 2.0
Designed Applications, Tampere University of Technology,
Institute of Digital and Computer Systems, Korkeakoulunkatu
1, FI-33720 Tampere, Finland., ISSN: 1558-1101, IEEE, July.

Aust, S. and Richter, H. (2012) ‘Energy-aware MPSoC for real-
time applications with space-sharing, adaptive and selective
clocking and software-first design’, International Journal on
Advances in Software, Vol. 5, pp.368–377.

Beltrame, G., Fossati, L. and Sciuto, D. (2008) ‘High level
modeling and exploration of reconfigurable MPSoCs’, NASA
Conference on Adaptive Hardware Systems, IEEE
Conference, October, pp.324–337, 978-0-7695-3166-3/08.

Ben Othman, S., Ben Salem, A.K., Abdelkrim, H. and
Ben Saouo, S. (2012) MPSoC Design Approach of FPGA-
Based Controller for Induction Motor Drive, L.E.C.A.P-
E.P.T./I.N.S.A.T., Tunisia, IEEE, pp.134–139.

Benchehida, C., Benhaoua, M.K., Zahaf, H.E. and Lipari, G.
(2022) ‘Memory-processor co-scheduling for real-time tasks
on network-on-chip many core architectures’, International
Journal of High Performance Systems Architecture, Vol. 11,
No. 1, March, pp.1–11, doi: 10.1504/IJHPSA.2022.121877.

Brandstätter, S. and Huemer, M. (2014) ‘A novel MPSoC interface
and control architecture for multistandard RF transceivers’,
IEEE Access Journal, Vol. 2, August, pp.771–787, doi:
10.1109/ACCESS.2014.2345194.

Cesário, W.O., Lyonnard, D., Nicolescu, G., Paviot, Y., Yoo, S.
and Jerraya, A.A. (2002) ‘Multiprocessor SoC platforms: a
component-based design approach’, TIMA Laboratory, IEEE
Design and Test of Computers, IEEE Design and Test of
Computers, Vol. 19, No. 6, December, pp.52–63, doi::
10.1109/MDT.2002.1047744(2002 IEEE).

Chandra, V.B., Sharma, V. and Chaudhari, M. (2007) Issues with
Designing a Dual Core Processor with a Shared L2 Cache on
a Xilinx FPGA Board, Project report of researcher at Indian
Institute of Technology, Kanpur, IIT Kanpur, Y3383, Y3393,
May.

Chen, H., Yin, L. and Peng, G. (2011) Implementation of Multi-
Core Embedded System on Compound Guiding System,
Beijing China, IEEE, pp.4348–4352, ID No. 978-1-4577-
0321-8/11.

Darwish, T., Kabbani, S. and Sleiman, A. (2005–2006) Multi-
Processor System Design on FPGA, Final Year Project
Report at The American University of Beirut, Faculty of
Engineering and Architecture, Spring.

Gohringer, D., Hubner, M., Zeutebouo, E.N. and Becker, J. (2011)
‘Operating systems for runtime reconfigurable MPSoCs’,
Research Article at International Journal of Reconfigurable
Computing, KIT, Germany, February, Hindawi Publication,
Vol. 2011, ID. 121353, p.16.

Huerta, P., Castillo, J., Mártinez, J.I. and López, V (2005) A
Microblaze Based Multiprocessor SoC, HW/SW Co-Design
Group, Universidad Rey Juan Carlos, 28933 Móstoles,
Madrid Spain, Research-Gate – 29226 7954, November,
pp.423–430.

Iturbe, X., Benkrid, K., Hong, C., Ebrahim, A., Torrego, R.,
Martinez, I., Arslan, T. and Perez, J. (2013) ‘R3TOS: a novel
reliable reconfigurable real time operating system for highly
adaptive, efficient, and depandable computing on FPGAs’,
IEEE Trans on Computers, Vol. 62, No. 8, pp.1542–1556,
August.

Johnson, A.P., Chakraborty, R.S. and Mukhopadyay, D. (2017)
‘An improved DCM based tunable random generator for
xilinx FPGA. IEEE Trans. on Circuit and Systems, Vol. 64,
No. 4, April, pp.452–456, ISSN: 1549-7747.

Kangas, T., Kukkala, P., Orsila, H. and Salminen, E. (2006) ‘UML
based multi-processor SoC design framework’, ACM
Transactions on Embedded Computing Systems (Nokia
Research Centre), Vol. 5, No. 2, May, pp.281–320.

Lahiri, K., Raghunathan, A. and Dey, S. (2004) ‘Design space
exploration for optimizing on-chip communication
architectures’, IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, Vol. 23, No. 6, pp.952–961.

Lien, C-M., Chen, Y-S. and Shih, C-S. (2007) ‘On-chip bus
architecture optimization for multi-core SoC systems’,
Published in Software Technologies for Embedded and
Ubiquitous Systems. SEUS. (2007) Lecture Notes in
Computer Science, Vol (4761) Springer, Berlin, Heidelberg,
ISBN 978-3-540-75663-7, pp.301–310, ‘2007.

Logue, J.D., Percey, A.K. and Erich, G.F. (2013) Synchronized
Multi-Output Digital Clock Manager, European Patent
International, Publication no WO 2002/029974, Application
No., PCT/US2001/031251, Vol. E81-C, No. 2, February,
pp.277–283, ISSN: 0916-8524.

Mandelli, M., Amory, A., Ost, L. and Moraes, F.G. (2011) Multi-
Task Dynamic Mapping Onto NoC-Based MPSoCs, 1PUCRS
– FACIN – Av. Ipiranga 6681 France, August, doi: 10.1145/
2020876.2020920.

Mohammed, M.S., Tang, J.W., Ab Rahman, A.A-h., Paraman, N.
and Marsono, M.N. (2018) ‘Rapid prototyping of NoC based
MPSoC based on dataflow modeling of real world
applications’, 9th IEEE Control and System Graduate
Research Colloquium (ICSGRC Malaysia), August,
pp.217–222, doi: 978-1-5386-6321-9/18.

Nikolov, H., Stefanov, T. and Deprettere, E. (2007) Efficient
External Memory Interface for Multi-Processor Platforms
Realized on FPGA Chips, LIACS, Leiden University, The
Netherlands, IEEE, ISSN: 1946-147, elec: 1946-1488.

Piscitelli, R. and Andy, D. (2011) ‘A high-level power model for
MPSoC on FPGA’, International Parallel and Distributed
Processing Symposium, Pimentel Computer Systems
Architecture Group Informatics Institute, University of
Amsterdam, The Netherlands, IEEE, pp.259–272.

Ryu, K.K. and Mooney III, V.J. (2004) ‘Automated bus generation
for multiprocessor SoC design’, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
Vol. 23, No. 11, November, pp.1531–1549.

Ryu, K.K., Shin, E.S. and Mooney, V.J. (2002) ‘A comparison of
five different multiprocessor SoC bus architectures’,
Published in Proceedings, IEEE Euromicro Symposium on
Digital Systems Design, Augus, ISBN: 0-7695-1239-9t,
doi: 10.1109/DSD 0.2001.952283.

Sabry, M.M. and Atienza, D. (20145) ‘Temperature-aware design
and management for 3D multi-core architectures’, IEEE
Conference on Now Foundations and Trends, March,
pp.96, Print ISBN: 9781601987747, doi:: 10.1561/100000
0032.

168 P.S. Titare and D.G. Khairnar

Sarbazi-Azad, A.H.H. (2018) ‘Dark silicon and future on-chip
systems’, Elsevier and Science Direct as Dark Silicon and
Future On-Chip Systems, 1st ed., Vol. 110, July, p.304,
eBook ISBN: 9780128153598.

Selvameena, T. and Arun Prasath, R. (2017) ‘Out-of-order
execution on reconfigurable heterogeneous MPSOC using
particle swarm optimization’, 2017 International Conference
on Innovations in Information, Embedded and
Communication Systems (ICIIECS), IEEE, pp.1–6, doi: 978-
1-5090-3294-5/17@2017.

Stavrou, K., Kyriacou, C., Evripidou, P. and Trancoso, P. (2007)
‘Chip multiprocessor based on data-driven multithreading
model’, International Journal of High Performance Systems
Architecture, pp.34–43, https://doi.org/10.1504/IJHPSA.
2007.013289, April

Titare, P.S. and Khairnar, D.G. (2020) ‘Development of multi-
processor system on chip using soft core: a review’,
Presented in 2nd IEEE International Conference on
Emerging Smart Computing and Informatics (IEEE-ESCI),
IEEE Pune Section, March.

Tong, J.G. and Anderson, I.D.L. (2006) ‘Soft core processors for
embedded systems’, 18th International Conference on Micro-
Electronics-2006, Research Centre for integrated micro-
systems, University of Windsor, ISSN: 1-4244-0765-
6/06/$20.00 @2006 IEEE.

Wang, C., Li, X., Zhang, J., Chen, P., Chen, Y., Zhou, X., Ray, C.
and Cheung, C. (2013) ‘Architecture support for task out of
order execution in MPSoCs’, IEEE Trans on Computers,
August, pp.1296–1310, doi:.10.1109/TC.2014.2315628.

Wolf, W. (2004) ‘The future of multiprocessor systems-on-chip’,
Proceedings of the 41st Annual Design Automation
Conference (DAC’04), San Diego, New York, USA, ISBN: 1-
58113-828-8, doi: 10.1145/996566.996753, 7 June,
pp.681–685.

Wolf, W., Jerraya, A.A. and Martin, G (2008) ‘MPSoC
technology’, IEEE Transactions on Computer-aided Design
of Integrated Circuits and Systems, Vol. 27, No. 10, October,
pp.1101–1113, doi: 10.1109/Tcad.2008.923415.

Zeferino, C.A., Kreutz, M.E., Carro, L. and Susin, A.A. (2002) ‘A
study on communication issues for system-on-chip’,
Proceedings of the 15th Symposium on Integrated Circuits
and System Design (SBCCI), SBCCI, December, Porto
Alegre, Brazil, pp.121–126.

Websites
EDK Concepts, Tools, and Techniques, Xilinx, http://www.xilinx.

com, July 2018.
Gaissler, J: The LEON processor. www.gaissler.com, 2005.cpu
LogiCORE IP Fast Simplex Link (FSL) V20 Bus (v2.11f), Xilinx,

http://www.xilinx.com, November 2018.
Microblaze Processor Reference Guide, Embedded Development

kit 13.1, Xilinx, http://www.xilinx.com, September 2020.
ML505/6/7 Virtex-5 Evaluation Platform, ML505 Schematic,

Xilinx 1280415, November 2021.
Xilinx White Paper on “Designing multiprocessor systems in

Xilinx Platform Studio”, WP262 (v2.0), November 2007.
Xilinx White Paper on “Getting started with the Microblaze

Development kit – Spartan 3E 1600E”, November 2007.
Xilinx: XAPP529: Connecting Customized IP to the Microblaze

Soft Processor core using the Fast Simplex Link (FSL)
Channel. (v1.3). 2004.

