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Abstract: The research paper presents the design methodology with novel task distribution 
technique on multi-processor system on chip (MPSoC) for speeding up the execution of 
arithmetic application. Utilisation of multiple soft core processors on field programmable gate 
array (FPGA) reduces the overload of adding external hardware to a system. Parallel processing 
of soft core processor with proposed task distribution technique makes any application to execute 
at faster rate. This task distribution based speed enhancement technique for arithmetic application 
is very feasible and appealing to the modern applications like neural networks, fuzzy logic, 
algorithms of machine learning etc. Experimentation on such architecture with arithmetic 
application shows significant increase in speed of operation with respect to conventional design. 
This is implemented using Microblaze soft core processor architecture on Xilinx Virtex 5 FPGA 
board. 
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1 Introduction 
Embedded systems are the systems performing specific task 
in stipulated time. The performance of embedded 
application in particular time deadline expects task to 
execute at faster rate. Also, the very large scale integration 
(VLSI) technology and its further versions like ultra large 
scale integration (ULSI) and nanotechnology shows that the 
amount of area available for particular logic will keep on  
 
 

reducing. Miniature through VLSI and embedded 
application demand for electronic system to work in faster 
manner without contributing additional area to the hardware 
motivates to design the multi-processor system. Most of the 
embedded devices right from cellular phones, satellites to 
household appliances like refrigerators, high definition 
television (HDTV), washing machine etc. are expecting 
faster execution of tasks. This can be definitely 
accomplished by using multi-processor system. The paper  
 



 MPSoC design and implementation using microblaze soft core processor architecture 157 

contributes in designing of such multi-processor system 
which improves the execution speed of an application. 

Multi-processor systems are the parallel computing 
processors designed to reduce workload on central or main 
processor. System can be made multi-processor either by 
adding hard core processors or by adding soft core 
processors. Hard core processor addition increases the 
silicon area on hardware wafer, but the soft core processor 
can be added or reconfigured without adding external 
hardware unit in existing system. Soft core configuration is 
just utilising the number of soft cores within the system. It 
is because of reconfigurable system like FPGA used for 
implementation of any application has soft cores available 
in it. Considering the prototyping level of FPGA, it will 
have the number of soft cores present in it. Utilising all the 
existing soft cores is preferred in this proposed technique. 
More the number of soft cores configured, more tasks can 
be mapped to it and accordingly more parallelism can be 
obtained. Such technique is used in proposed method 
presented in this paper. However, the limitation on utilising 
the number of soft core processor is the total amount of 
memory available on board (Lien et al., 2007). Thus for a 
particular FPGA there is a limitation of number of soft core 
processors to be used. Hence, an appropriate selection of 
board and number of soft core processors on it can solve the 
issue related to multi-processing. The paper presents such 
soft core based architecture with novel task mapping 
technique to improve performance in the form of speed, 
which is explained from Section 6 onwards. 

Initially, embedded system architecture were preferred 
as simple controlling systems for explicit application. These 
system demands for faster speed of execution without 
consuming more amount of power in order to execute the 
modern requirement of application, like encoding or 
decoding of audio or video information, image processing, 
etc. and therefore, the multiprocessor system on a chip 
(MPSoC) is one of the solution to deal with such escalating 
computational needs (Huerta et al., 2005; Tero et al., 2006; 
Wolf et al., 2008; Wolf, 2004). 

An MPSoC is a multi-processor on a single silicon-chip 
which may include about two or more number of Processor-
Memory Modules (PMM). Considering the 10 PMM, if the 
memory modules are grouped together into a single first 
level cache (L1) that is shared between all the available 
cores then it is termed as a multi-core processor. The term 
multi-core architecture is used if two or more number of 
cores is developed on the chips that are interconnected 
together by appropriate resources (Lien et al., 2007; Cesario 
et al., 2002; Chandra et al., 2007; Titare et al., 2020). 

Recent technologies are demanding such MPSoC 
architecture based approach for faster execution of 
application. Faster speed along with efficiency is the 
ultimate requirement of embedded consumers. All these 
necessities are possible in small integrated chips through 
MPSoC. 

Thus MPSoC have emerged as an important class in the 
field of micro-electronics and VLSI. MPSoC shows an  
absolute method to incorporate multiple processing cores on 

a single silicon chip. It is promising to recognise following 
five major steps for proper designing of an MPSoC:  

a to develop an application 

b to configure platform accurately 

c to program a code 

d to map an application on to the platform 

e to debug. 

Most of the MPSoC development work is centred at one of 
the steps like platform configuration or application 
mapping. Also instruction set architecture (ISA) based 
system design approach is preferred for some MPSoC 
systems (Huerta et al., 2005; Titare et al., 2020). 

According to the system architecture model, MPSoC are 
classified as Homogeneous and Heterogeneous. The 
Homogeneous MPSoC has processors of similar 
architecture while Heterogeneous type has different 
processor architecture on same platform (Lahiri et al., 
2004). This research paper provides a design and 
implementation of homogeneous MPSoC system 
architecture using Microblaze soft core processor. 

Designing of such MPSoC architecture with soft core 
processors is presented in this paper. Also the task mapping 
approach to respective soft core processors is illustrated in 
this research paper which shows significant improvement in 
speed of execution of arithmetic application. Different 
arithmetic algorithms are used in industrial applications like 
decision based self-automated Conveyor belt, temperature 
monitoring of industrial furnaces, etc. and embedded 
products like heart-rate monitoring in smart gadgets, etc. 
Computing such algorithms at faster rate is the demand of 
the current digital world. The proposed MPSoC approach 
shows how the desired results can be obtained at faster rate. 
Hence it reduces the total time consumption for any 
mathematical operation. Here, the arithmetic application 
based tasks are used for computations. If the mathematical 
operation speed is improved then automatically it improves 
the computational speed of the application. Therefore using 
the methodology elaborated in this research paper makes the 
embedded devices to work faster and to provide required 
output at the earliest. Thus the proposed method contributes 
in speed improvement of digital applications. 

This paper is framed in following sequence, Section 2: 
explains the Soft core processor architecture used in 
MPSoC along with its feature; Section 3: elaborates the 
Communication architecture to be preferred while selecting 
MPSoC network; Section 4: describes the MPSoC 
Architecture and its features; Section 5: shares the 
information related to different types of Communication 
topologies; Section 6: explains the different mapping 
techniques available for MPSoC and the proposed mapping 
technique; Section 7: explains the complete system design 
using all the previous section parameters; Section 8: shows 
different Results and Analysis of an application using  
proposed techniques and the paper concludes in Section 9. 
Sections 2–5 is included here in order to explain the 
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different parts involved or selected in the design of 
proposed technique on MPSoC architecture. The importance 
of each part of architecture is elaborated here in these 
sections. 

Designing MPSoC using soft core does not add any 
physical area to the system. Hence soft core approach is 
preferred. There are different soft core processors available 
as per (Titare et al., 2020) explored in Section 2. 

2 Soft core processor architecture 

• Microblaze soft core processor 

The embedded processor named Microblaze is a 32-bit 
reduced instruction set computer (RISC) soft core optimised 
for implementation on Xilinx Field Programmable Gate 
Array (FPGA), as shown in Figure 1 (Xilinx.com 2020; 
Tong and Anderson, 2006). 

The Microblaze processor is exceedingly configurable, 
as it allows selecting a definite set of features required by 
design. Hence such soft core processor type is selected for 
the implementation of proposed application. Such features 
help MPSoC design to be reconfigurable. Microblaze being 
a Harvard architecture, it implicates that it has different 
interfacing units for data bus and instruction bus access. 
Picoblaze is 8 bit soft core processor, so instead of that 32 
bit Microblaze is preferred as a 32 bit instruction set. 

Each bus unit is further divided into a local memory bus 
(LMB) and on-chip peripheral bus (OPB). LMB provides an 
access to on-chip dual port block RAM. On-chip and off-
chip memory and peripherals, both are interfaced using 
OPB. The Microblaze core also facilitates with 8 input and 
8 output interfaces to the fast simplex link (FSL) buses. 
These FSL buses are unidirectional dedicated 
communication channels, detail explanation is in Section 3 
(Huerta et al., 2005; Xilinx.com, 2020; Tong and Anderson, 
2006; Titare et al., 2020). Microblaze is a soft core 
processor specifically designed for Xilinx FPGAs. 

Figure 1 Microblaze soft core architecture 

 
Source: Xilinx.com (2020) 

 
 
 
 

There are different types of soft core processors available 
like 8 bit Picoblaze from Xilinx, NIOS II from Altera, Leon 
by Gaisler research and Xtensa series from Tensilica 
(Gaissler et al., 2005; Titare et al., 2020). Leon3 supports 
maximum operating frequency of around 400 MHz by using 
Application Specific Integrated Circuit (ASIC) 
implementation while Microblaze and NIOS-II has 
200 MHz on their respective FPGA platform. However, 
Xtensa has the highest design flexibility since unlimited 
custom instructions and execution units can be implemented 
on the processor’s core (Xilinx: XAPP529, 2004; Xilinx 
White Paper, 2007; Gaissler, 2005; Titare et al., 2020). 
Hence, based on application requirement, soft core 
processor needs to be selected. In order to interface such 
processors network, a communication medium is required 
between such soft core processors. So, communication 
architecture is presented in further Section 3. 

3 Communication architecture 

• Fast simplex link (FSL) overview 

FSL buses are used as a communication link between 
Microblaze cores. Microblaze has eight input and eight 
output FSL interfaces. These FSL channels are dedicated, 
unidirectional, point-to-point data streaming interfaces. 

The width of FSL interface is 32 bits. Data and control 
words can be exchanged through FSL channel. The FSL 
interface can have maximum speed up to 300 MB/sec 
depending on the target device. 

The FSL bus system is an ideal choice for inter 
processor communication (like Microblaze processor to 
another Microblaze processor) or Input-Output streaming 
communications (Xilinx.com Logicore IP, 2018; Ryu et al., 
2004). 

The features of the FSL bus interface are: 

• unidirectional and Non-arbitrated communication 

• dedicated, point-to-point communication 

• support for data and instruction communication 

• 600 MHz standalone operation 

• configurable data size 

• first-in, first-out (FIFO) based communication (Huerta 
et al., 2005; Xilinx.com Logicore IP, 2018). 

One Master drives FSL bus and in turn FSL drives one 
Slave. Figure 2 signifies the working principle of the FSL 
bus system and its signals (referred from Xilinx LogicoreIP 
datasheet). FSL link allows data transfer through group of 
macro supported by Xilinx EDK (Embedded Development 
Kit). Reading and writing of FSL allows communication 
between processors (Lien et al., 2007; Huerta et al., 2005;  
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Zeferino et al., 2002; Titare et al., 2020; Brandstatter et al., 
2014). 

Communication architecture like FSL helps to 
interconnect soft core. The dedicated connections between 
cores ensure that data transition delay is less. Such 
communication link of FSL is used in the proposed method 
as it helps to interconnect soft core with dedicated 
connection. As the work is more concentrated on speed of 
execution of application, the propagation delay in 
communication link should be minimum. Hence, such 
dedicated connection of FSL is preferred in designing of 
MPSoC. Developing architecture with multiple processors 
and interfacing it using communication link is termed as 
MPSoC, as explained further in Section 4. 

Figure 2 FSL bus signal 

 
Source: Xilinx.com logicoreIP (2018) 

4 MPSoC architecture 
VLSI, the branch of microelectronics starts evolving since 
1990. The single processor technique developed for an 
embedded system provides application from communication 
domain, networking domain, etc. However, multimedia 
application requires system having multiple processors to 
compute the given task in shorter stipulated time as 
compared to single processor time. 

Figure 3 Block diagram of MPSoC architecture  

 
Source: Wolf et al. (2008) 

Processors involved in multiple processing systems should 
have the capacity of parallel programming to improve its 
performance. Very long instruction word (VLIW) based 
processors are the example for the same, having parallelism 
approach for the execution of a task (Ryu et al., 2002). 
Digital signal processing (DSP) processors used in smart 
phones for signal processing purpose is also executing 
parallel processing of instructions. On the other hand, ASIC 
architecture has specific blocks and is not preferred for the 

design of general purpose application. Following block 
diagram shown in Figure 3 corresponds to multiple 
processor architecture. 

MPSoC architecture includes multiple processors which 
collectively has central processing unit (CPU) and memory  
together, to control all the peripherals (I/O or Input/Output 
devices) over a network. Memory sharing, data transfer and 
interconnection are main concern of multi-processing 
system. Almasi and Gottlieb et al. defined multiprocessors 
as parallel processing elements that collectively cooperate 
and communicate to compute complex problem at faster 
rate (Almasi and Gottlieb et al., 1989; Sabry et al., 2014; 
Selvameena et al., 2017). 

Designing an environment for MPSoC architecture 
comprise of CPU, cache memory, I/O units and memory 
interface, as shown in Figure 3. CPU interconnection 
supports higher level of component integration which will 
reduce the design area and design time that too without 
sufficient loss in efficiency. MPSoC environment can be 
designed with hardware-software co-design, including 
synthesisable hardware interfaces, hardware accelerators, 
operating systems (OS) and device drivers. All these units 
are controlled by OS and application programming interface 
(API) (Cesario et al., 2002; Ali et al., 2018; Iturbe et al., 
2013; Gohringer et al., 2011). This MPSoC will be used as a 
platform to develop the proposed design methodology with 
novel technique in this paper. 

Communication networks and soft core study inference 
to choose FSL and Microblaze as more compatible soft  
core architecture. Thus, all the above mentioned units along 
with communication link (like FSL for Microblaze) 
complete the MPSoC architecture. Subsequent Section 5 
will elaborate on methods to interconnect multiple 
processors in a network. 

5 Communication technologies 
Multiple processors can be inter-connected to each other 
using different topologies. Selection of topology depends on 
the type of soft core to be used. Some of the network 
topology used for connecting various processors (CPU) in a 
cluster through the FSL link for point-to-point data transfers 
is discussed as follows: (Huerta et al., 2005; Titare et al., 
2020) 

Bus topology: In this topology, all the computers are 
interconnected using a single line through trans-receivers, as 
shown in Figure 4. All lines should be closed with matched 
termination. Speed of operation and network performance 
depends on the number of CPU available on a network. If 
one CPU transmits a message, then rest all the CPU will be 
waiting to transmit their data. At a time only one can send 
data. 

The complete communication network will fail if there 
is even a single break in the main line. Such bus networks 
are also called passive topology as the computers or CPU on 
the bus only responds (or listens) to data transmitted. They 
do not transfer data from CPU to CPU. 
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Figure 4 Bus network 

 

Hierarchical bus network: It is also termed as split-bus 
architecture. It is a network that connects two or more buses 
using Bus Bridge, as displayed in Figure 5. This bus bridge 
is a controllable connection point, which when enabled 
makes the connection otherwise disconnect it. 

Figure 5 Hierarchical bus network 

 

Ring topology: A network in which one CPU is connected 
to next CPU, in continuous manner and in turn last CPU is 
connected to first CPU, forming a ring pattern. Its symbolic 
representation is shown in Figure 6. The data is transferred 
from one node (CPU) to another until it reaches the last 
destination node present in a network. The main drawback 
of this topology is that the data propagation delay will be 
longer if transmitting CPU and receiving CPU are present at 
longer distance in a ring. More the number of nodes, longer 
will be the propagation delay. However, it has the advantage 
lesser circuit complexity as the number of interconnections 
is less. 

Figure 6 Ring network 

 

Mesh network: It is a network where each and every node 
(CPU) is interconnected to each other, demonstrated in 
Figure 7. This type of topology has the least travelling time 
for data transfer between any nodes over a network. This is 
because of direct connection between transmitting node and 
receiving node. 

Figure 7 Mesh network 

 

The major drawback of such topology is that the circuit 
complexity increases as the number of interconnection 
increases due to increase in the number of nodes in a 
network. 

Star topology or network: This topology has a central node 
connected to each and every node present in a network. Its 
structure seems to be like a star (as shown in Figure 8) and 
hence the name. One centralised controlled called Master 
CPU and multiple slave type of configuration can be 
achieved in such topology. 

Due to master slave architecture, central CPU decides 
which task has to be allocated to which CPU, and can also 
collect results from all these CPU. The main drawback is if 
the central node fails, then entire control is lost and the 
complete system fails. As all the operations are regulated 
through central node, then communication bottleneck can 
occur for the large bulk of data operations. 

Figure 8 Star network 

 
Multi-Star network can be created by grouping individual 
star network. The central star network is responsible for 
control of multiple star networks attached to it (Othman et 
al., 2012; Piscitelli et al., 2011). 

All these topologies have some advantages and 
disadvantages. Depending on the application requirements, 
a particular type of topology can be selected and mapped on 
MPSoC. Novelty of this research paper lies with the 
mapping of tasks. This technique along with the 
development of MPSoC is explained in forthcoming 
Sections 6 and 7. 

6 Mapping for MPSoC 
Mapping of tasks for MPSoC means tasks can be mapped to 
different CPU as per the topology selected. Previous 
literature shows the availability of multiple task mapping 
algorithms (Chen et al., 2011; Wang et al., 2013). However, 
the proper approach has to be followed while mapping the 
tasks on MPSoC. Different types of approach for task 
mapping are mentioned below which are classified on the 
basis of timing instants when these tasks are mapped: 

• During design time: If the static or offline mapping 
approach is preferred then MPSoC resources can be 
explored at better level using complex process.  
The only major issue with static mapping is to handle 
dynamic tasks 
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• During run time: the dynamic or also called online 
mapping approach needs simple but faster processes as 
it is handling application when it is in execution mode. 

There are two different dynamic mapping approaches for 
designing an MPSoC, as mentioned below: 

• Mapping with resources reservation: This method helps 
to verify whether enough MPSoC resources are 
available or not before mapping their respective 
application tasks on system. 

• Mapping without resources reservation: This approach 
helps to map the initial task of the application keeping 
the remaining tasks in waiting state. Task belonging to 
wait-state are mapped whenever required. Hence, in 
this case, application execution will start faster, but 
may wait for other resources to get into ready state. 

Run time mapping of tasks in MPSoC is a need for the 
dynamic mapping approach. Such mapping can be 
controlled using: 

• Centralised: One processing element will be 
centralised, which will control, regulate and combine 
the mapping process. This central (or single) master 
will manage the mapping of resources. Due to single 
centralised control, bottleneck is observed with respect 
to scalability and performance. 

• Distributed: Multi-master or multi-cluster approach is 
preferred. One processing element in each network or 
in each cluster is responsible for mapping of tasks. It is 
complicated but better approach with respect to 
performance and speed (Mandelli et al., 2011). 

In addition to use such mapping of tasks, the proposed 
technique of mapping based on percentage of RAM 
available with respect to look up table (LUT) available, is to 
be used. 

Comparing with the previous work done by researchers 
with respect to task mapping, as explained above, proposed 
method is classified under Distributed dynamic mapping 
technique. As presented in Sections 7 and 8 the mapping of 
task based on Block RAM (BRAM) shows the improvement 
in speed of operation. In order to demonstrate this 
experimentation, multiple mathematical algorithms were 
implemented. Some of the arithmetic application is 
explained with this novel technique of task mapping in 
further sections. 

Consequently, such mapping of tasks on MPSoC with 
communication link forms the complete system as discussed 
in further section. This Section 7 presents the design and 
development of MPSoC as per arithmetic application 
requirement. 

7 The complete system architecture 
MPSoC system is collectively a combination of multiple 
processing cores, having tasks mapped onto it with the 
respective algorithms. These cores are interconnected to 

each other using communication link like FSL, depending 
on the type of FPGA. A single processor system on a chip 
(SPSoC) consists of one CPU, program and data memory, 
timer and an application based peripheral. The major 
difference between SPSoC and MPSoC is that in MPSoC, 
the number of CPU is not limited to one (Anjam et al., 
2010; Nikolov et al., 2007; Beltrame et al., 2008). 

Depending on an application requirement, program or 
data memory can be configured. Additional program 
memory can be used to operate them in parallel. So, MPSoC 
provides an advantage of speed through parallelism, thus 
improves the overall performance (Lien et al., 2007; Huerta 
et al., 2005; Titare et al., 2020). 

MPSoC is defined as group of 2 or more number of 
processors developed on system on chip (SoC). Hence, the 
system designed here is of dual processor system. System 
with more number of processors connected using topology 
like ring and star is implemented. Star topology based five 
soft core MPSoC system is developed and demonstrated in 
Section 8. Dual processor system is developed using Xilinx 
XPS EDK tool (Xilinx Platform Studio and Embedded 
Development Kit) (Kangas et al., 2006; Xilinx White Paper, 
2007; Xilinx.com EDK, 2018). 

Memory units, clocking circuitry and peripherals are 
interfaced with Microblaze soft core processor using FSL 
communication link, as shown in Figure 9. The diagram 
represented in Figures 3 and 9 are almost similar. Figure 3 
is symbolic representation of multiple soft core processors 
connected using FSL bus. While Figure 9 indicates the 
experimental representation of Figure 3, which is generated 
after the simulation and synthesis process is completed in 
Xilinx tool. From Figure 9, black coloured block represents 
soft core processor connecting to RAM memory using blue 
coloured LMB bus. Purple coloured bus connects the 
processors with Microblaze debug module and brown 
coloured bus connects processor with peripherals. 
Additionally the blocks like mailbox and mutex is used for 
inter task communication and synchronous purpose. The red 
coloured horizontal block indicates Microprocessor 
Microcontroller Module interface interconnecting the 
system with external system. 

As shown in Figure 9, MPSoC is implemented using 
mathematical algorithms by distributing entire logic in the 
form of tasks to different soft core processors. Task 
mapping to each processor is done using the proposed 
technique of Computational compatibility ratio, as 
explained further. Such tasks are distributed to both the 
processor for parallel execution. Proposed work is having 
distribution of tasks to different processors based on 
percentage of RAM available with respect to LUT available 
with that soft core processor. The technique used to 
distribute tasks is shown in Table 1. 

Table 1 Percentage of LUT and RAM available for dual 
processor system 

Processor no. % RAM available % LUT available 
P1 14% 21% 
P2 13% 18% 
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Figure 9 Dual processor system (representing multi-processor system) architecture (see online version for colours) 

 
 
Table 1 is showing the details about the amount of LUT and 
RAM used by processor for the arithmetic application. P1 
and P2 are Microblaze soft core processors with distinct 
memory size for Block RAM. Based on this table, as the 
percentage of RAM and LUT available is more, processor 
computing any task in faster manner can be decided. Ratio 
for processor P1 is 14/21 = 0.6667 and for processor P2 is 
13/18 = 0.7222. Henceforth, this RAM/LUT ratio is called 
as computational capability. It means if computational 
capability is more then, that processor will work at faster 
rate than other processor. 

Consider the example shown in Figure 9 and Table 1, 
where MPSoC is designed with dual soft core processors 
and with specified RAM memory distribution. This memory 
distribution is performed by using different address pointer 
in Addressable bus memory under Xilinx Build Support 
package tool. After compiling the instance of a code, it 
generates design summary which clearly specifies the LUT 
available with soft cores. Now comparing this ratio of 
computational capability the tasks can be mapped to 
different processors. From these two processors named P1 
and P2, as the P2 processor has higher computational 
capability ratio, it works faster than P1 processor. This was 
demonstrated and similar results were observed in multiple 
examples as shown in Section 8. Hence the second instance 
of code which executes immediately after the conclusion of 
first, the processor having higher ratio is allotted with the 
major task. Mapping this task is in similar manner of calling 
functions automatically using labels. Higher is the ratio 
associated with processor then accordingly the major task is 

labelled to this processor. The entire execution shows that 
the tasks are mapped adaptively to the processors based on 
this computational capability with that processor. Therefore 
the major tasks can be allotted to the processor having 
higher computational capability ratio. Hence the 
architecture with more number of processors, can be 
classified further with their computational capability ratio 
and all together improves the speed of application. Thus the 
MPSoC with such technique shows significant improvement 
in speed. 

The results obtained using this proposed technique of 
task distribution and its analysis is explained in further 
section named “Results and Analysis”. Huerta et al. (2005) 
have defined performance parameters named ‘Speedup’ and 
‘Efficiency’ to check MPSoC performance as elaborated in 
the next section. So, all together make the MPSoC to work 
at faster rate. 

8 Results and analysis 
Result obtained for MPSoC can be evaluated using metrics 
like speedup and efficiency as discussed in next sub-section. 
This task distribution based speed enhancement technique 
(presented in Section 7 using dual processor system) for 
arithmetic application is very feasible and appealing to the 
modern applications like neural networks, fuzzy logic, 
algorithms of machine learning etc. Each of these 
applications desires the fundamental usage of arithmetic 
application. Therefore, further sub-section demonstrates 
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execution of such arithmetic application on MPSoC. All 
these applications are selected as these arithmetic 
applications are most frequently used in any computations 
or in arithmetic logical unit (ALU) operations. The speed 
improvement observed in these applications can be achieved 
through parallelism also. But in addition to parallelism if 
tasks are mapped as presented earlier then the further speed 
improvement is observed. To understand this, mathematical 
parameter like speedup and efficiency can be used. The 
further sub-sections are organised as first explaining the 
parameters, then the application with proposed technique 
and later the overall graphical analysis of application. The 
expression of speedup and efficiency which determines the 
system architecture performance is explained first. Based  
on which the further applications are mapped with  
these parameters. Arithmetic applications like matrix 
multiplication, 32-bit multiplier and GCD computation is 
performed using the proposed technique of MPSoC. Later, 
the dual processor system explained in previous section is 
extended with more number of processors and its analysis  
is presented. Further all this application execution is  
compared with conventional technique and the comparison 
is presented in graphical manner. 

• Speedup and efficiency 

Speedup is the ratio of time taken by the single processor 
(ts) to the time taken by the ‘p’ number of processor (tp) 
executing in parallel for MPSoC. Ideally, this ratio should 
have the number equal to the number of processor (p). It 
indicates as the number of processor increases, speedup 
increases. 

However, speedup never remains equal to ‘p’, as there is 
always a communication overhead. It means certain time is 
consumed during task mapping and inter- communication, 
because of which it is lower than p (Huerta et al., 2005). 

Speedup = ts/tp (1) 

For parallel operating processors in MPSoC, performance 
can also be measured through efficiency. Efficiency is 
defined as the ratio of speedup to the number of processor 
(p). An ideal value of efficiency should be one (Huerta et 
al., 2005). 

Efficiency = speedup/p (2) 

• Matrix multiplication application 

The Matrix multiplication of integers and floating-point 
numbers were performed by Huerta et al. (2005). An 
application of matrix multiplication was tested to check the 
parallel execution of the task. The demonstration involves  
a technique or an algorithm for computing matrix 
multiplication application. 

This technique was implemented by transmitting rows 
of first matrix (M1) and entire second matrix (M2) to each 
processor present in a network. For example consider both 
these matrices are of 2×2 in size. Same is represented in 
Figure 10(a) as the data transmitted by nodes (2 slave 
processors) to central node (master processor). Then each 

processor computes the matrix multiplication for that 
particular row and corresponding second matrix received. 
Later after computation, this processor returns the result 
back to main central processor acting as master processor. 
Master or central processor is responsible to collect results 
from each processor and produce output in desired form. 
The empirical result on console window for experimentation 
of matrix multiplication is demonstrated in Figure 10(b).  
It clearly indicates that even if the tasks are distributed 
between the processors using proposed technique still the 
same result is obtained. The proposed method of task 
mapping shows the same result as observed in conventional 
technique. 

Figure 10(a) Matrix multiplication on dual processor system 
demonstrated using nodal network diagram  
(see online version for colours) 

 

Figure 10(b) Result observed for Matrix multiplication on dual 
processor system (see online version for colours) 

 

Figure 10(b) shows output obtained for 2×2 matrices. 
Matrix A and matrix B are transmitted to the slave. And the 
statement showing ‘Received Matrix A’ is for the 
experimentation purpose to indicate that console receives 
the text information from the program. Slave multiplies 
each row and column, and gives the result in matrix C. Thus 
value of each element will be obtained as 5×5 + 5×5 = 50. 
This can also be performed if only one row of matrix A and 
entire matrix B is sent to each of the slave, they will 
compute the matrix multiplication and will return their 
results to master. And master will display the complete 
result. 

Huerta et al. (2005) performed the matrix multiplication 
on floating-point values as well. As compared to integer 
value, the floating-point matrix multiplication consumes 
more time as the information contents present in the data are 
larger than the integer values. However, the time required to 
transfer data will remain same. This extra time consumed in 
the floating- point operation as compared to integer matrix 
multiplication can be reduced using floating-point 
processors. 

As the processing time for floating-point multiplication 
is longer, improvement in efficiency and speedup for 
MPSoC is observed. However, in floating-point as well, 
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there will be communication overhead for the transfer of 
matrix on multiple processors and collecting results back. 
To overcome this problem of overhead, the common 
message can be broadcasted to all the processors, was 
suggested (Lien et al., 2007; Titare et al., 2020). This will 
reduce the time required to transfer the same message to 
each processor individually. 

With respect to the previous application of matrix 
multiplication, second matrix is common to all processors 
and hence can be broadcasted to all the processors, as 
shown in Figure 10(a). Here, broadcasting communication 
time is also needs to be considered. Broadcasting common 
tasks and mapping as presented earlier helps to reduce the 
sufficient amount of time. 

By using this application, different test can be 
performed by varying different parameters like matrix size, 
data types, number of processors, etc. Such tests were 
performed to check the application execution time. The total 
time consumption includes time taken for the collection of 
data (matrix values) from memory, transferring data to each 
processor, processing (multiplication) of the collected data, 
the collection of results from each processor and storing 
final results back to memory (Lien et al., 2007; Huerta et al., 
2005; Titare et al., 2020). Also, there is research available 
based on improvement of clocking circuitry (Johnson et al., 
2017; Almeida et al., 2011; Logue et al., 2013). In addition, 
the work referred in Darwish et al. (2006), Arnold et al. 
(2014), Sultan et al. (2018), Aust and Richter (2012), 
Stavrou et al. (2007) and Chawki et al. (2022) is based on 
developing MPSoC or network on chip (NoC) using 
different modelling style, different threading and task 
mapping approach for different application. Comparing this 
with the proposed method presented in the paper, the task 
mapping is distinct and it shows approximately 6–7% 
improvement in speed for those applications also. 

From this it can be concluded that the results were not as 
good as it could be expected since the efficiency gets 
affected as the number of processors increases. However, 
this effect is less than compared to speed improvement 
obtained from parallelism. For example, if the matrix 
multiplication by single processor takes 10 micro second 
(µs) to conclude with results, then ideally dual processor 
should compute it in 5 µs. But this time is more than 5 µs. 
This is due to communication overhead. Time taken for 
distributing the data in multiple processors and collecting it 
back gets added in total time. However, due to parallelism, 
the overall time consumed shows significant reduction as 
compared to the single processor system. 

• 32-bit-Multiplier design application 

Similar arithmetic application of 32 bit multiplier can also 
be executed on HyperTerminal using UART (Universal 
Asynchronous Receiver Transmitter). From this Figure 11 it 
can be clearly observed that multiplication of two 32 bit 
numbers written in memory can be multiplied to get 64 bit 
output. And this result can be read from memory using Read 
address variable for that BRAM memory. 

For instance, memory is written with value ‘3’ in 32 bit 
word then its 32 bit multiplication result can be observed in 
Read register as ‘9’ value as output. Figure 11 shows similar 
results as observed in conventional system. Computational 
time required for this system is reduced and same can be 
observed in graph shown in Figure 14. 

Figure 11 32-bit multiplier application and its execution on 
UART HyperTerminal (see online version for colours) 

  

• Greatest common divisor (GCD) computation 

While using MPSoC with proposed task distribution 
technique for GCD arithmetic computation, sufficient 
amount of speed improvement is observed. GCD is 
calculated by comparing two numbers and obtaining their 
common divisor. In Dual processor system, Master takes 2 
input values from user and forwards it to slave. This is 
possible in programming part of the system, using Base 
System Builder. While writing a program for an application, 
it can be decided that which soft core processor should be 
made as master and others as slave. Later, while executing 
the application the module two instance of program decides 
the task mapping to soft core based on RAM/LUT ratio. 
These examples are divided into small tasks using program 
functions. Further these functions are mapped to soft  
core using ratio and accordingly they are called by  
function labels. For this application of GCD, program is 
written to compute GCD by taking test case values from 
user. Master program stores it in variable and then transfer it 
to function where the computation is calculated. The 
functions are interconnected using FSL bus macro like 
PUTFSL and GETFSL (which transmits and receive the 
preprocessing values within the soft core processors) It 
transfer the data between one soft core to other, for 
example, value from one processor is transferred using 
PUTFSL and the same value is received in another 
processor using GETFSL. Thus the value from master can 
be transferred to slave and is returned using these macros. 
Master sends it to slave and slave then calculates GCD and 
returns result back to master in order to display the answer 
for user. This application also demonstrates that the 
proposed task distribution technique is helpful for faster 
execution of arithmetic application. 
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As discussed in previous Section 7 (related to dual 
processor system), similar thing is demonstrated further for 
more number of processors. Results observed for such 
system and its analysis is elaborated in this section. The 
same dual processor system presented in previous section is 
extended to five processor system to verify the proposed 

mapping technique on MPSoC architecture. If five Microblaze 
soft core processors are connected in star topology manner, 
as shown in Figure 12, then results obtained for the same is 
displayed graphically in Figure 13. The amount of RAM to 
LUT ratio available with each processor helps to decide the 
processor that can work at faster rate. 

Figure 12 Environment for multi-processor system on chip architecture (star topology) (see online version for colours) 

 
 

The reason to present graph in Figure 13(a) is to show the 
similarity in result observed for different processors. As the 
columns shown in Figure 13(a) is partially co-related, the 
same graph is demonstrated in bar chart format in  
Figure 13(b), as RAM and LUT are distinct entity. Also for 
some of the arithmetic applications presented earlier the 
amount of RAM utilised is approximately 14%. Hence the 
ratio observed is 0.7 approximately. The resultant values 
observed for ratio is in closed range (0.6–0.72) indicates 
that mapping of task in such similar valued range processor 
also shows significant improvement in speed. Like the 
processor with computational compatibility ratio 0.72 shows 
faster execution than processor with 0.68. Hence the 
processor P2 having ratio value 0.72 is mapped with major 
task. Therefore the speed improvement is observed in this 
MPSoC system. Similarly, more the computations involved 
in processor, more RAM memory will be utilised and 
accordingly the ratio value will change. In such case also, 
the processor having higher ratio will give faster result. 
Hence such processor will be automatically mapped with 
major task of computation using function call, as presented 
earlier. 

From this experimentation and analysis, as shown in 
Figure 13(a) and (b), it is observed that processor P2 is 
having higher ratio of computational capability than others. 
Hence, from this it can be concluded that the task expecting 
more computation is to be allotted to the processor P2, as it 
is having more computational capability ratio. More the 
number of processors, more will be the speed of execution 
considering the tasks are correctly allocated. However if 
many processors are added in the network then the task 
distribution time comes into consideration which increases 
the communication overhead. In addition to more number of 
processors, if tasks are mapped to processor using this 

computational capability ratio, then significant increase in 
speed is observed as presented in Figure 14. 

Figure 13(a) Graphical analysis indicating processor having 
higher RAM/LUT ratio (see online version  
for colours) 

 

Figure 13(b) Bar chart indicating processor having higher 
RAM/LUT Ratio (similar to Figure 13(a))  
(see online version for colours) 

 



166 P.S. Titare and D.G. Khairnar 

Table 2 Percentage of speed enhancement observed in 
arithmetic application 

% of Speed enhancement 
Arithmetic 
applications Conventional Proposed 

Percentage 
improvement 

observed 

Matrix 
Multiplication 

23.96 31.05 7.09 

32-bit 
Multiplier 

36.02 43.72 7.7 

GCD 
Computation 

16.89 23.14 6.25 

Table 2 displays speed improvement for the arithmetic 
application and corresponding graph is demonstrated in 
Figure 14. 

Figure 14 Graph of speed enhancement by different applications 
for Conventional method and proposed method  
(see online version for colours) 

 

All these applications are implemented on Xilinx Virtex 5 
FPGA (XUPV5LXT) (Xilinx.com ML505, 2021) and the 
clock rate measured through System builder function shows 
the improvement in speed of execution as displayed in 
Figure 14. From Table 2 and graph as shown in Figure 14,  
it is observed that proposed system gives higher speed of 
execution than conventional system. Results and analysis of 
each and every application shows that the amount of time 
consumed by conventional system is more than the 
proposed system. Hence the speed enhancement is more for 
proposed system. This means the proposed system will 
execute an arithmetic application at faster rate than 
conventional system. By measuring the difference between 
the speed enhancements between these two types of system, 
it implicates that 7% of speed is improved by proposed 
system. For matrix multiplication, proposed system 
provides 31% of speed and conventional as 24%. This 24% 
of speed improvement is of Dual processor system as 
compared to single processor system. 

And for same dual processor system, if proposed 
technique (RAM/LUT) of task mapping is used then 7% 
more speed improvement is observed. Similarly, by 
performing the other two applications like 32 bit multiplier 
and GCD computations implicates significant improvement 
of speed. Hence, the enhancement in speed of around 7% is 
observed in all the three applications. This clearly indicates 
that if the tasks are distributed using this proposed technique 
of RAM to LUT ratio then significant improvement in speed 
is observed. Similar results were obtained for LCM (Least 
Common Multiple), where 54 microsecond time was 
consumed by proposed technique compared to 76 
microsecond of time consumed using conventional 
technique. Thus the execution performance of arithmetic 
application for Microblaze based MPSoC architecture is 
improved. 

9 Conclusion 
This research work presents the design and implementation 
of MPSoC architecture using soft core processors named 
Microblaze for faster execution of arithmetic application. 
The research paper concludes that use of soft core processor 
reduces the overhead of adding extra hardware to the 
system. Hence, with- out adding extra hardware to an 
embedded system, tasks can be computed at faster rate. And 
the utilisation of FSL link inferences that it can be preferred 
for inter-communication between multiple parallel 
processing processor. The selection of topology also 
contributes to make system execute the task at faster rate. 

By using the proposed technique, it shows that the task 
having major complexity of computation should be allotted 
to the processor having higher value of RAM to LUT ratio. 
From results obtained for arithmetic application and its 
analysis with respect to speed enhancement clearly  
shows that proposed technique will save the CPU execution 
time. By experimenting some of the arithmetic application, 
this research paper concludes that proposed system shows 
7% of speed improvement as compared to conventional 
system. 

Usage of these technique in other application like neural 
networks, fuzzy logic, and machine learning algorithm also 
shows the significant improvement in the speed of 
execution. 
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