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Abstract: Behavioural research scientists have become increasingly aware of 
the importance of missing data methods. Including auxiliary variables in data 
analysis can increase the plausibility of meeting the missing at random 
assumption, leading to increased parameter estimation accuracy and a more 
trustworthy goodness-of-fit evaluation. This study addresses a missing data 
pattern typically mishandled by using listwise deletion. The missing data 
pattern echoes a common research scenario in which some participants fail to 
respond to all the studied variables but provide information on auxiliary 
variables. Researchers commonly delete these participants from further data 
analyses in practice. Using confirmatory factor analysis models, this study 
shows that including effective auxiliary variables to analyse data with this 
missing data pattern can substantially improve the estimation accuracy, 
particularly when auxiliary variables correlate with latent factors. 
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1 Introduction 

Due to the vast development of software implementation of full information maximum 
likelihood (FIML) and multiple imputation (MI), behavioural research scientists have 
become increasingly aware of these two state-of-the-art methods for analysing missing 
data (Schafer and Graham, 2002). Compared with traditional methods such as listwise 
deletion, pairwise deletion, and single imputation, FIML and MI can provide unbiased 
parameter estimates, accurate standard errors, and more trustworthy model-data fit 
evaluation under certain conditions (Schafer, 1997). FIML is primarily implemented in 
structural equation modelling (SEM) software programs, such as Mplus (Muthén and 
Muthén, 1998–2017) and the lavaan package in R (Rosseel, 2012). Because many 
traditional statistical procedures such as regression analysis, ANOVA, and the 
independent t-test can be viewed as special cases of SEM (e.g., Bollen, 1989), researchers 
can also use FIML for these traditional statistical analyses. MI, when conducted 
appropriately, produces similar results to FIML under many conditions (e.g., Collins  
et al., 2001; Schafer, 2003) and, therefore, FIML is the focus of this study. 

Little and Rubin (2002) defined missing at random (MAR) and missing completely at 
random (MCAR). MAR states that the probability of missingness is independent of the 
missing values, while MCAR states that whether a response is missing is entirely 
independent of both the missing and observed values. MAR is a less restrictive 
assumption than MCAR and is a necessary condition for producing unbiased parameter 
estimates for FIML (Rubin, 1976). However, when the MAR assumption is violated, that 
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is, when missingness is due to missing values (MNAR), FIML produces biased results 
(Little and Rubin, 2002). Unfortunately, the MAR assumption is not testable despite its 
importance in securing the accuracy of FIML. 

To improve the practice of FIML, increasing the plausibility of meeting the MAR 
assumption is critical. Methodologies have proposed experimental design methods and 
statistical methods to increase the likelihood of meeting the MAR assumption. Research 
scientists can employ planned missing data designs before data are collected (e.g., 
Graham et al., 2006). Such designs randomly assign groups of participants to skip a 
subset of variables and thus reduce participants’ burden. Because of the random selection 
in such designs, the missing data mechanism is MCAR. After data collection is 
completed, research scientists can employ inclusive analytical strategies to increase the 
chance of meeting the MAR assumption when missing data occur, thus reducing bias and 
increasing efficiency (Collins et al., 2001; Little and Rubin, 2002; Raykov and 
Marcoulides, 2014; Schafer and Graham, 2002). In the context of MI, Collins et al. 
(2001) also suggested the inclusion of extra variables that have high correlations with the 
studied variables that contain missing values because such variables can potentially 
increase the estimation accuracy. Collins et al. (2001) referred to the extra variables as 
auxiliary variables (AVs; see also Graham, 2003). 

For FIML, Graham (2003) proposed the extra-dependent variable model and 
saturated model to include AVs. Specifically, the extra-dependent model (Graham, 2003; 
Graham et al., 1997), available in lavaan, requires that all existing predictors predict AVs 
in a regression model, residuals of AVs are correlated with each other and that the 
residual of every AV is correlated with the residual of every latent endogenous variable. 
The saturated model, implemented in lavaan and Mplus, requires that every AV correlate 
with every exogenous manifest variable in the model of interest and the residual of every 
endogenous manifest variable. Additionally, all AVs are correlated with each other. 
Adding AVs contributes to zero addition to the model degrees of freedom with the 
saturated model, producing similar results to the extra-dependent model. Through a 
simulation study, Graham (2003) showed that including AVs does not compromise the 
model of substantive interest. Including the AVs that account for the non-responses meets 
the MAR assumption and thus improves the estimation accuracy. Additionally, including 
the AVs which do not account for non-responses does not degrade the parameter 
estimation accuracy, regardless of the distribution of the AVs. 

The advantages in parameter estimation accuracy introduced by the inclusion of AVs 
in Graham (2003) have been echoed by other studies (e.g., Enders, 2008; Raykov and 
Marcoulides, 2014; Savalei and Bentler, 2009; Yuan et al., 2015). Effective AVs that can 
increase the estimation accuracy are either the direct causes of missingness, correlates of 
missingness, or correlates of the studied variables with missing values (Collins et al., 
2001). 

2 A missing data pattern commonly being mishandled 

Despite the general recognition of FIML as an appropriate method to address non-
responses, the following missing data pattern, shown in Figure 1, has not been handled 
appropriately in practice, based on our observation. Suppose a research scientist 
developed a new assessment with ten items (i.e., X1–X10 shown in Figure 1) that aims to 
measure the perception of online violence. For some pilot data evaluating the 
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psychometric properties, the ten items were included as the last few items in a lengthy 
online survey relevant to the experience of internet use. Therefore, the 50 items preceding 
X1–X10 could be considered AVs (AV1–AV50) when evaluating the measurement model 
for X1–X10. Suppose 1,000 participants answered the online survey, but only 600 
completed the last ten items, while the other 400 quit the survey before they reached the 
last ten items. When evaluating the psychometric properties of the last ten items (e.g., 
through factor analysis), it is a common practice to only use the data from the 600 
participants because the other 400 individuals provided no responses to any of the ten 
items involved in the factor analysis. 

Figure 1 An illustration of the missing data scenario where a proportion of participants fail to 
answer any studied variable but provide responses to auxiliary variables 

ID AV1 AV2 … AV50  X1 X2 … X10 

1 Obs. Obs. Obs. Obs.  Obs. Obs. Obs. Obs. 

2 Obs. Obs. Obs. Obs.  Obs. Obs. Obs. Obs. 

… Obs. Obs. Obs. Obs.  Obs. Obs. Obs. Obs. 

600 Obs. Obs. Obs. Obs.  Obs. Obs. Obs. Obs. 

601 Obs. Obs. Obs. Obs.  Mis. Mis. Mis. Mis. 

… Obs. Obs. Obs. Obs.  Mis. Mis. Mis. Mis. 

1,000 Obs. Obs. Obs. Obs.  Mis. Mis. Mis. Mis. 

   Studied variables  

Notes: ‘Obs.’ denotes observed values. ‘Mis.’ denotes missing values. 

Intuitively, excluding the 400 participants from the factor analysis seems justifiable 
because they answered none of the ten items for assessing the perception of online 
violence. Additionally, the remaining sample size of 600 appeared to be large enough for 
factor analysis with ten items. However, excluding the 400 participants is essentially the 
application of listwise deletion, which will result in biased estimates if the missingness in 
X1–X10 is relevant to AV1–AV50. For example, if participants who did not enjoy spending 
time online tended to quit the survey early, the 600 participants then formed a biased 
sample because the sample contained the participants associated with lower levels of 
internet involvement, which could be correlated with perceived online violence. 

The above missing data patterns may also be observed in longitudinal datasets. For 
example, the National Education Longitudinal Study of 1988 datasets (Curtin et al., 
2002) contained students who dropped out of the school, transferred to other schools, or 
other reasons for quitting the study in certain waves. Excluding these students from the 
analyses results in a biased sample (i.e., a sample of students with relatively higher 
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academic performance than students who dropped out). On the other hand, their data 
collected in the previous waves could serve as AVs, potentially increasing the accuracy 
of statistical results. 

While the above scenario fits the realm of missing data analysis, excluding the 
participants who did not respond to any of the studied variables appears to be a more 
popular choice, according to our experience. While existing missing data literature (e.g., 
Collins et al., 2001; Graham, 2003) recommends including AVs in the analysis, research 
scientists may be reluctant to do so for the missing data pattern shown in Figure 1. 
Potential reasons for the reluctance can be several. First, why would one run a factor 
analysis with participants who provide no data on any of the studied items in the factor 
analysis? Including these participants is rather counter-intuitive. Second, it is not unusual 
that the proportion of participants who skip all the studied variables is large (e.g., greater 
than 50%). It seems inappropriate to include this portion of participants because the 
effective sample size appears to be artificially increased. Third, the remaining sample size 
(e.g., 600) appears acceptable for the planned analysis (e.g., the factor analysis with ten 
items). Additionally, no studies have investigated the benefits of including the 
participants who answer none of the studied items in statistical analyses. It is not clear 
whether including the participants that fail to respond to any studied item can 
substantially increase the parameter estimation. 

The above reasons motivate practitioners to use listwise deletion instead of using an 
inclusive strategy in conjunction with FIML to handle missing data of this pattern. 
However, most simulation studies for missing data analyses simulate data that contain 
participants who skipped some but not all of the studied items (e.g., Collins et al., 2001; 
Enders, 2008; Graham, 2003; Savalei & Bentler, 2009). We are not aware of any 
methodological study that directly addressed the missing data pattern of this type, making 
it difficult to provide suggestions to research scientists in applied fields to handle this 
type of missing data pattern appropriately. 

The purpose of the present simulation study is to evaluate parameter estimation 
accuracy when the inclusive strategy is applied to scenarios in which a portion of 
participants fails to answer any studied item but provides data for AVs. We expected that 
including the AVs that correlate with the studied variables can increase the parameter 
estimation accuracy compared with listwise deletion. 

3 Method 

3.1 The data-generation model 

The data-generation model was a confirmatory factor analysis (CFA) model. A CFA 
model was chosen because it is one of the popular statistical techniques used in many 
disciplines. The model is shown in Figure 2, which consists of two factors measured by 
10 items. The first factor (F1) was measured by X1–X5 and the second factor (F2) by  
X6–X10. The model was expressed as 

,i i ik k ix τ λ F e= + +  

where xi is the score for the ith item (i = 1, …, 10), τi is the intercept for the ith item, λik is 
the loading of the ith item on the kth latent factor (k = 1, 2), Fk is the score for the kth latent 
factor, and ei is the residual score for the ith item. The mean and variance of each factor 
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were 0 and 1, respectively. The correlation between F1 and F2 was fixed at 0.30, which 
corresponded to distinguishable factors that were correlated in practice. The loading 
parameter λ had the same value for all items in a given condition. τi was 0 for every item. 
The variance of ei was 1 – λ2, such that xi had a mean of 0 and a variance of 1. 

Figure 2 The CFA model for data generation 

  

In addition to X1–X10, AVs were generated that fell into three categories, according to 
Collins et al. (2001). First, A was the AV that correlated with X1–X10 and directly caused 
missingness. Incorporating A into the CFA model as an AV met the MAR assumption, 
thus leading to unbiased estimates. Second, B1–B10 were the AVs that correlated with  
X1–X10, but were not the direct causes of missingness. Although B1–B10 did not directly 
cause missingness, including them might still improve the estimation accuracy (e.g., 
Collins et al., 2001; Graham, 2003). Third, C1–C10 were the AVs that were independent 
of X1–X10 and did not cause missingness. Therefore, C1–C10 were considered ineffective 
AVs. 

3.2 Manipulated conditions 

3.2.1 Correlation with AVs 
The simulation design systematically varied the correlation between the AVs and latent 
factors (ρAF) and the correlation between the AVs and observed items (ρAX). The 
magnitude of correlations is important because it is directly related to the effectiveness of 
AVs (e.g., Collins et al., 2001; Graham, 2003). In the current design, ρAX is a function of 
ρAF or vice versa. Specifically, ρAX between xi and AVj is 
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assuming cor(ei, AVj). Therefore, ρAX = λik ρAF. 
While both ρAX and ρAF can potentially determine the effectiveness of AVs, previous 

simulation studies typically varied ρAX and ρAF together while fixing λik at given values. 
For example, Enders (2008) fixed λik at 0.7 for all conditions and varied ρAF at 0.24, 0.40, 
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0.54, and 0.90, letting ρAX to be determined by equation (1). Such a design avoided the 
confounding effect due to λik but made ρAX and ρAF confound. It remains unclear whether 
ρAX or ρAF is more important in determining the effectiveness of the AVs. 

Understanding the role of ρAX and ρAF is important in practice because practitioners 
rely on the value of ρAX and ρAF to select effective AVs. While ρAX can be obtained by 
requesting a FIML-correlation matrix for the AVs and studied variables, ρAF is not 
directly observable and requires researchers’ theoretical understanding of the variables. 
In order to distinguish the effects of ρAX and ρAF, the present study systematically 
manipulated the values of ρAX and ρAF, letting λik be determined by equation (1). 

To generate A and B1–B10, we manipulated ρAX at 0.2, 0.3, and 0.4 to represent 
realistic correlations for data in behavioural research. For each value of ρAX, ρAF varied at 
0.3, 0.5, and 0.7. The value of λ was then determined based on equation (1). For example, 
when ρAX = 0.2, λ was 0.67, 0.40, and 0.29 corresponding to ρAF of 0.3, 0.5, and 0.7, 
respectively. Note that the two conditions with ρAX = 0.3 and 0.4, paired with ρAF = 0.3 
led to non-positive definite covariance matrices for X1–X10, A, and B1–B10 and were thus 
excluded. The resulting seven values for λ were presented in Table 2. Additionally, the 
correlations among A and B1–B10 were fixed at .6 to ensure that all the data-generation 
matrices were positive-definite. C1–C10 were independent and identically distributed 
random variables, and each was generated according to a standard normal distribution. 
Therefore, C1–C10 were considered ineffective AVs. 

3.2.2 The proportion of missing values 
Missingness on X1–X10 was determined by the value of A. The proportion of missing 
values (P%) varied at 10%, 25%, and 50%. For conditions with P% missing participants, 
participants whose scores of A smaller than the Pth percentile point of A had missing 
values on all X1–X10. 

3.2.3 Sample size 
The sample size was 100, 300, and 600. Therefore, the number of participants that had 
data on X1–X10 was smaller due to missing values (e.g., 50 participants if 50% 
missingness existed for the sample size of 100). Parameter estimates from a large sample 
size of 100,000 were reported to approximate the population values. Therefore, any 
differences in the results between the small samples and the large sample reflect the 
impact of sampling fluctuation. The sample sizes of 300 and 600 were considered 
acceptable for a simple-structured CFA model with ten items. The available data were at 
least 150 with 50% of missingness. Although 150 may not be sufficient for a CFA with 
ten items, it is not uncommon in practice. The sample size of 100 could be too small, 
particularly with a considerable amount of missingness, but it provided insights regarding 
how small the inclusive strategy might lead to severe inadmissible solution issues and 
highly biased results. 

A total of 63 simulation conditions were obtained (i.e., seven combinations of ρAF and 
ρAX × three proportions of missingness × three sample sizes). For each simulation 
condition, 1,000 replications were implemented. 
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3.3 Data analysis 

For each generated dataset, a two-factor model was analysed with or without including 
AVs. Complete data before the generation of missing values were analysed using  
normal-theory maximum likelihood without including the AVs. Parameter estimates from 
the complete datasets were used as the baseline for comparison. The parameter of interest 
was the correlation between the two factors. For each dataset with missing values, the 
following five analyses were conducted. For the analyses with AVs, Graham’s (2003) 
saturated model was used such that every AV was correlated with the residuals of X1–X10 
and that all AVs were correlated with each other. 

1 No AVs were included in the analyses. This analysis was essentially the same as 
applying listwise deletion. 

2 A was included. Because A was the correlate of X1–X10 and the direct cause of 
missingness, the parameter estimation accuracy was expected to increase compared 
with analysis (1). 

3 B1–B10 were included. Including many correlates could potentially increase the 
parameter estimation accuracy. 

4 C1–C10 were included. Including ten ineffective AVs would not improve or degrade 
the estimation accuracy. Inadmissible solution rates, however, might increase when 
C1–C10 were included, according to previous studies (e.g., Savalei and Bentler, 
2009). 

5 A1, B1–B10, and C1–C10 were included. Including all AVs mimicked the scenario 
where a researcher adds all the available variables in the analysis without selecting 
the AVs carefully. Including too many variables that are either effective or 
ineffective, the inadmissible solution rates may increase. However, whenever the 
algorithm successfully converged, we expected that the parameter estimation was 
more accurate than listwise deletion. 

Rates of inadmissible solutions and average parameter estimates across the replications 
were summarised. A replication had inadmissible solutions if the model did not converge 
or converged to improper solutions. Improper solutions included negative variances of 
item residuals, factor correlations greater than 1 in absolute values, and standard errors 
not applicable. Replications with inadmissible solutions were excluded from further 
results summary. All data generation and analyses were implemented in R (R Core Team, 
2019). The lavaan package was used for the CFA (Rosseel, 2012), and AVs were 
incorporated into the analyses by Graham’s (2003) saturated model using the semTools 
package (Jorgensen et al., 2018). 

4 Results 

In this section, parameter estimates based on a large sample (N = 10,000) were first 
reported. These estimates were used to approximate population values under various 
conditions of missingness and the correlation with AVs. Then results from small samples 
(n = 100, 300, and 600) were reported. For small samples, inadmissible solution rates 
were summarised, followed by parameter estimation. 
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Table 1 Parameter estimates of latent factor correlation when sample size was 100,000 

ρAX ρAF λ Com 
LW A B C ALL 

10% missingness 
0.2 0.3 0.67 0.298 0.281 0.300 0.297 0.281 0.300 
0.2 0.5 0.40 0.296 0.244 0.297 0.290 0.244 0.297 
0.2 0.7 0.29 0.301 0.180 0.293 0.281 0.180 0.292 
0.3 0.5 0.60 0.300 0.248 0.302 0.294 0.248 0.302 
0.3 0.7 0.43 0.300 0.184 0.302 0.287 0.184 0.302 
0.4 0.5 0.80 0.305 0.248 0.303 0.295 0.248 0.303 
0.4 0.7 0.57 0.296 0.185 0.297 0.281 0.185 0.296 
    25% missingness 
0.2 0.3 0.67 - 0.268 0.299 0.295 0.268 0.299 
0.2 0.5 0.40 - 0.196 0.285 0.273 0.196 0.285 
0.2 0.7 0.29 - 0.091 0.301 0.271 0.091 0.299 
0.3 0.5 0.60 - 0.201 0.293 0.279 0.201 0.293 
0.3 0.7 0.43 - 0.097 0.304 0.277 0.097 0.305 
0.4 0.5 0.80 - 0.204 0.298 0.284 0.204 0.297 
0.4 0.7 0.57 - 0.084 0.289 0.263 0.084 0.289 
    50% missingness 
0.2 0.3 0.67 - 0.262 0.306 0.296 0.262 0.306 
0.2 0.5 0.40 - 0.151 0.290 0.263 0.151 0.288 
0.2 0.7 0.29 - 0.012 0.315 0.278 0.012 0.318 
0.3 0.5 0.60 - 0.164 0.299 0.276 0.164 0.299 
0.3 0.7 0.43 - –0.003 0.305 0.264 –0.003 0.304 
0.4 0.5 0.80 - 0.170 0.304 0.283 0.170 0.304 
0.4 0.7 0.57 - –0.003 0.312 0.268 –0.003 0.311 

Note: Values that were greater than 10% relative bias (i.e., > 0.33 or < 0.27) were italics; 
Com is for complete data; LW is listwise deletion; A was the direct cause of 
missingness and correlated with the studied variables; B represented the analytical 
conditions where B1–B10 (i.e., correlates that are not the direct cause of missingness) 
were included; C represented the analytical conditions where C1–C10 (independent 
random noises) were included. 

4.1 Parameter estimation accuracy in large samples 

Table 1 presents the parameter estimates for the factor correlation when the sample size 
was 100,000. When data were complete, the estimates were unbiased across all 
conditions. With incomplete data, listwise deletion led to substantial bias (> 10% relative 
bias) across all the conditions except for the condition with ρAX = 0.2, ρAF = 0.3, and 10% 
missingness, where the relative bias was 6% (i.e., 0.281 compared with the population 
value of 0.300). The bias resulting from listwise deletion increased when the proportion 
of missingness increased. 
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Given a value of ρAX, the bias due to listwise deletion increased when ρAF increased. 
For example, when ρAX was 0.2 under the conditions with 10% missingness, the estimates 
were 0.281, 0.244, and 0.180 when ρAF was 0.3, 0.5, and 0.7, respectively. Given a value 
of ρAF, the magnitude of ρAX and thus λ only slightly impacted the estimates for listwise 
deletion. For example, when ρAF was 0.7 under the conditions with 10% missingness, the 
estimates were 0.180, 0.184, and 0.185 when ρAX was 0.2, 0.3, and 0.4. 

When missing values existed, including A as the AV resulted in accurate parameter 
estimates across all conditions. The highest relative bias was 5% among all conditions. 
Including B1–B10 as the AVs also improved the estimation accuracy compared with the 
listwise deletion. However, the results obtained by including B1–B10 could be less 
accurate than those obtained by having A, especially when more missing values existed. 
For example, four conditions (one condition with 25% missingness and three conditions 
with 50% missingness) led to relative bias greater than 10% in Table 1 when B1–B10 were 
treated as the AVs. C1–C10 were ineffective AVs because including them did not improve 
nor degrade the estimation accuracy compared with listwise deletion. With all the AVs 
included, results were almost the same as those obtained from analyses with A only. 

4.2 Inadmissible solution rates in small samples 

Table 2 presents the inadmissible solution rates for each simulation condition. The 
conditions with complete data provided the baseline inadmissible solution rates for 
comparison. When data were complete, ρAX, ρAF, and the proportion of missingness had 
no impact on the inadmissible solution rates. Therefore, only n and λ could change the 
inadmissible solution rates for complete data in the simulation design. For complete data, 
the highest inadmissible solution rates occurred under the conditions with λ being 0.29 
and n being 100. When n increased to 600, all conditions had close to 0 inadmissible 
solution rates. When missing values existed, the inadmissible solution rates increased 
with higher proportions of missingness, regardless of how the missing data were handled. 
For listwise deletion, the inadmissible solution rates increased in general compared with 
the rates from complete data, especially for conditions with a small ρAX in conjunction 
with a large ρAF, which corresponded to a small λ. For example, with 25% missingness, 
ρAX = 0.2, ρAF = 0.7 and n = 100, the complete-data condition yielded 61.7% inadmissible 
solution rates and listwise deletion led to a higher rate of 79.2%. 

Compared to the listwise deletion, including A as the only AV or including B1–B10 as 
AVs resulted in lower, or almost the same (i.e., difference smaller than .1%) inadmissible 
solution rates. Including C1–C10 as AVs and the listwise deletion yielded similar 
inadmissible solution rates (i.e., the difference was mostly within 1%, and the largest 
difference was 2.1% among all conditions) because C1–C10 were simply random noises. 
Nevertheless, compared with the listwise deletion, when A, B1–B10, and C1–C10 were all 
included as the AVs, the inadmissible solution rates decreased by at least 1% in 12 out of 
the 63 conditions, increased by at least 1% in 4 out of the 63 conditions (all the four 
conditions had a sample size of 100 and 50% missingness), and remained to be similar 
(difference smaller than 1%) for the other 47 conditions. The results implied that adding a 
certain number of extra random noises would not increase the inadmissible solution rates 
as long as the effective AVs were included unless the effective sample size was 
extremely small. 
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Table 2 Inadmissible solution rates (%) for the CFA model 
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4.3 Parameter estimation accuracy in small samples 

Tables 3, 4, and 5 present the means and empirical standard errors of factor correlation 
estimates across replications yielding admissible solutions for each condition with a 
sample size of 600, 300, and 100, respectively. Because analyses were conducted based 
on the small samples, the differences between Tables 1 and Tables 3–5 were 
consequences of sampling fluctuation. Under small samples, the means of factor 
correlation estimates showed similar patterns to those in Table 1. 

First, small samples resulted in unbiased factor correlation estimates for complete 
data. The only exception was for the condition with ρAX = 0.2, ρAF = 0.7, λ = 0.29, and  
n = 100, where the estimates were biased due to the small sample size in conjunction with 
a small λ. Biased estimates existed for all conditions when missing data were handled by 
listwise deletion. Similar to the pattern in Table 1 when data were complete, given a 
value of ρAX, the bias due to listwise deletion increased when ρAF increased. Given a value 
of ρAF, however, the magnitude of ρAX and thus λ only slightly impacted the estimates for 
listwise deletion. 

With A included as the only AV, the estimation accuracy improved substantially 
compared with listwise deletion. With A included, all conditions with 600 observations 
resulted in the relative bias smaller than 10%. When n was 300, the only condition that 
showed the relative bias greater than 10% had a λ of 0.29 and 50% missingness. When n 
was 100, more conditions had greater than 10% relative bias, especially for conditions 
with 50% missingness and conditions with a λ of 0.29. However, the bias obtained by 
including A was consistently smaller than the bias from listwise deletion. For example, 
with 50% missingness and 100 observations, listwise deletion resulted in average 
estimates ranging from –0.004 to 0.248, but including A resulted in average estimates 
from 0.133 to 0.272. 

Including B1–B10 under small samples also improved the estimation accuracy 
compared with listwise deletion, although the improvement was not as large as that from 
the analysis with A included.1 With B1–B10, the bias increased when λ was smaller, n was 
smaller, and the proportion of missingness was larger. Nevertheless, the bias obtained by 
including B1–B10 was consistently smaller than the bias from listwise deletion. 

With C1–C10 included, results remained almost the same as the results obtained from 
listwise deletion. When all A, B1–B10, and C1–C10 were included as AVs, parameter 
estimation accuracy substantially improved compared with listwise deletion. Including all 
AVs provided almost identical results compared with the analyses with only A. 

Note that when λ was too small, including A, B1–B10, or all AVs could still result in 
biased estimates, but they still resulted in improved estimation accuracy compared with 
the listwise deletion. For example, with 50% missingness and a λ of 0.29, including A led 
to mean estimates of 0.133, 0.209, and 0.275 for n of 100, 300, and 600, respectively, 
while listwise deletion only led to 0.040, –0.053, and –0.006. 

As for the empirical standard errors, the inclusion of different types of AVs did not 
change the results substantially for most conditions. Notable differences (e.g., > 0.01 
difference) only occurred under conditions where large standard errors were expected 
(i.e., conditions with very small sample size, low loadings, or a large proportion of 
missingness). Under such conditions, including A or all the AVs resulted in the smallest 
empirical standard errors, followed by including B1–B10 only. Applying the listwise 
deletion or including C1–C10 as the only AVs led to the largest empirical standard errors. 
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Table 3 Means and empirical standard errors of factor correlation estimates when sample size 
was 600 
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Table 4 Means and empirical standard errors of factor correlation estimates when sample size 
was 300 
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Table 5 Means and empirical standard errors of factor correlation estimates when sample size 
was 100 

 ρ A
X 

ρ A
F 

λ 
C

om
 

 
LW

 
 

A 
 

B 
 

C
 

 
AL

L 

Es
t 

SE
 

Es
t 

SE
 

Es
t 

SE
 

Es
t 

SE
 

Es
t 

SE
 

Es
t 

SE
 

 
 

 
 

 
10

%
 m

is
sin

gn
es

s 

0.
2 

0.
3 

0.
67

 
0.

30
0 

0.
12

1 
 

0.
28

3 
0.

12
9 

 
0.

29
9 

0.
12

9 
 

0.
29

8 
0.

12
9 

 
0.

28
3 

0.
12

9 
 

0.
29

9 
0.

13
0 

0.
2 

0.
5 

0.
40

 
0.

30
0 

0.
23

4 
 

0.
24

6 
0.

26
3 

 
0.

29
2 

0.
25

4 
 

0.
28

4 
0.

25
6 

 
0.

24
5 

0.
26

2 
 

0.
29

2 
0.

25
6 

0.
2 

0.
7 

0.
29

 
0.

23
6 

0.
37

3 
 

0.
13

1 
0.

41
3 

 
0.

21
6 

0.
39

6 
 

0.
17

1 
0.

39
8 

 
0.

13
0 

0.
40

9 
 

0.
17

2 
0.

42
1 

0.
3 

0.
5 

0.
60

 
0.

29
6 

0.
13

1 
 

0.
24

1 
0.

14
4 

 
0.

29
0 

0.
14

4 
 

0.
28

4 
0.

14
3 

 
0.

24
1 

0.
14

5 
 

0.
29

0 
0.

14
6 

0.
3 

0.
7 

0.
43

 
0.

29
0 

0.
20

2 
 

0.
17

8 
0.

23
8 

 
0.

28
5 

0.
21

9 
 

0.
27

2 
0.

21
6 

 
0.

17
8 

0.
23

8 
 

0.
28

2 
0.

21
6 

0.
4 

0.
5 

0.
80

 
0.

29
4 

0.
10

2 
 

0.
24

2 
0.

10
9 

 
0.

29
3 

0.
11

0 
 

0.
28

5 
0.

10
9 

 
0.

24
2 

0.
10

9 
 

0.
29

0 
0.

11
0 

0.
4 

0.
7 

0.
57

 
0.

29
6 

0.
13

2 
 

0.
17

9 
0.

15
3 

 
0.

29
1 

0.
14

6 
 

0.
28

3 
0.

14
2 

 
0.

17
9 

0.
15

3 
 

0.
29

4 
0.

14
1 

 
 

 
 

 
 

25
%

 m
is

sin
gn

es
s 

0.
2 

0.
3 

0.
67

 
- 

- 
 

0.
27

9 
0.

14
2 

 
0.

30
3 

0.
14

4 
 

0.
30

1 
0.

14
4 

 
0.

27
9 

0.
14

3 
 

0.
30

2 
0.

14
9 

0.
2 

0.
5 

0.
40

 
- 

- 
 

0.
21

5 
0.

29
0 

 
0.

29
0 

0.
28

2 
 

0.
28

2 
0.

28
3 

 
0.

21
4 

0.
29

4 
 

0.
28

5 
0.

30
2 

0.
2 

0.
7 

0.
29

 
- 

- 
 

0.
06

1 
0.

45
5 

 
0.

17
5 

0.
44

8 
 

0.
12

2 
0.

47
0 

 
0.

05
5 

0.
47

2 
 

0.
13

8 
0.

47
1 

0.
3 

0.
5 

0.
60

 
- 

- 
 

0.
20

0 
0.

16
6 

 
0.

28
0 

0.
16

8 
 

0.
27

1 
0.

16
6 

 
0.

20
0 

0.
16

8 
 

0.
27

5 
0.

17
5 

0.
3 

0.
7 

0.
43

 
- 

- 
 

0.
08

3 
0.

28
7 

 
0.

27
2 

0.
26

7 
 

0.
25

2 
0.

25
5 

 
0.

08
6 

0.
28

5 
 

0.
25

7 
0.

26
7 

0.
4 

0.
5 

0.
80

 
- 

- 
 

0.
20

5 
0.

12
6 

 
0.

28
5 

0.
12

8 
 

0.
27

8 
0.

12
4 

 
0.

20
5 

0.
12

7 
 

0.
28

0 
0.

12
9 

0.
4 

0.
7 

0.
57

 
- 

- 
 

0.
10

3 
0.

19
2 

 
0.

29
5 

0.
17

6 
 

0.
27

9 
0.

16
3 

 
0.

10
2 

0.
19

2 
 

0.
29

2 
0.

16
7 

 
 

 
 

 
 

50
%

 m
is

sin
gn

es
s 

0.
2 

0.
3 

0.
67

 
- 

- 
 

0.
24

8 
0.

17
0 

 
0.

27
2 

0.
17

9 
 

0.
27

3 
0.

17
5 

 
0.

24
9 

0.
17

5 
 

0.
27

7 
0.

21
5 

0.
2 

0.
5 

0.
40

 
- 

- 
 

0.
18

3 
0.

36
5 

 
0.

23
8 

0.
37

5 
 

0.
24

9 
0.

36
1 

 
0.

17
3 

0.
37

5 
 

0.
28

1 
0.

43
0 

0.
2 

0.
7 

0.
29

 
- 

- 
 

0.
04

0 
0.

51
0 

 
0.

13
3 

0.
52

6 
 

0.
17

8 
0.

49
3 

 
0.

04
5 

0.
54

0 
 

–0
.0

05
 

0.
59

3 

0.
3 

0.
5 

0.
60

 
- 

- 
 

0.
16

8 
0.

22
3 

 
0.

24
9 

0.
23

5 
 

0.
25

7 
0.

23
0 

 
0.

16
6 

0.
22

8 
 

0.
24

0 
0.

28
1 

0.
3 

0.
7 

0.
43

 
- 

- 
 

–0
.0

09
 

0.
35

6 
 

0.
20

5 
0.

38
0 

 
0.

22
4 

0.
34

5 
 

0.
00

7 
0.

36
2 

 
0.

17
7 

0.
42

2 

0.
4 

0.
5 

0.
80

 
- 

- 
 

0.
15

4 
0.

15
3 

 
0.

24
1 

0.
17

2 
 

0.
24

8 
0.

16
0 

 
0.

15
5 

0.
15

7 
 

0.
22

9 
0.

20
6 

0.
4 

0.
7 

0.
57

 
- 

- 
 

–0
.0

04
 

0.
25

8 
 

0.
25

2 
0.

26
6 

 
0.

25
4 

0.
21

9 
 

–0
.0

12
 

0.
26

6 
 

0.
21

8 
0.

27
7 

N
ot

es
: V

al
ue

s t
ha

t w
er

e 
gr

ea
te

r t
ha

n 
10

%
 re

la
tiv

e 
bi

as
 (i

.e
., 

> 
0.

33
 o

r <
 0

.2
7)

 w
er

e 
ita

lic
s;

 C
om

 is
 fo

r c
om

pl
et

e 
da

ta
; L

W
 is

 li
stw

ise
 d

el
et

io
n;

 A
 w

as
 th

e 
di

re
ct

 c
au

se
 o

f m
iss

in
gn

es
s a

nd
 

co
rre

la
te

d 
w

ith
 th

e 
stu

di
ed

 v
ar

ia
bl

es
; B

 re
pr

es
en

te
d 

th
e 

an
al

yt
ic

al
 c

on
di

tio
ns

 w
he

re
 B

1–
B 1

0 (
i.e

., 
co

rre
la

te
s t

ha
t a

re
 n

ot
 th

e 
di

re
ct

 c
au

se
 o

f m
is

sin
gn

es
s)

 w
er

e 
in

cl
ud

ed
; C

 re
pr

es
en

te
d 

th
e 

an
al

yt
ic

al
 c

on
di

tio
ns

 w
he

re
 C

1–
C 1

0 (
in

de
pe

nd
en

t r
an

do
m

 n
oi

se
s)

 w
er

e 
in

cl
ud

ed
. 



   

 

   

   
 

   

   

 

   

    On the use of inclusive strategy when some participants fail to provide data 371    
 

    
 
 

   

   
 

   

   

 

   

       
 

Although loading parameters were not the focal parameters in the current simulation 
study, we reported the results for loading estimates in Tables A1–A4 in the appendix. In 
general, the loading estimates were less biased (i.e., relative bias smaller than 10% in 
most conditions) compared with the factor correlation estimates when the listwise 
deletion was employed or when C1–C10 were included as AVs. Such bias could be 
reduced by including A or B1–B10 as the AVs or by including all the available AVs. 

5 Discussion 

This study aims to increase the awareness of a particular missing data pattern where some 
participants skip all studied variables but provide information for AVs. Despite the 
increasing understanding of missing data analysis, this missing data pattern is typically 
handled by listwise deletion, which can result in substantially biased parameter estimates 
if the remaining participants form a non-random sample. The simulation results 
evidenced the potential gains in parameter estimation accuracy when effective AVs were 
included in the analyses. We recommend that one should not simply delete the  
non-responses from further analysis because such practice is equivalent to applying 
listwise deletion. 

A challenge lying in the application of AVs is the selection of effective AVs, 
particularly when a large number of candidate AVs exist. Results based on linear 
regression models from Collins et al. (2001) suggested that, with 25% missingness, AVs 
that correlated with the studied variables smaller than 0.4 could be safely ignored. 
However, in CFA analyses, a ρAX of 0.4 can be demanding because it requires both ρAF 
and λ to be high. For example, a ρAF of 0.6 and a λ of 0.6 yield only a ρAX of 0.36. The 
present study systematically varied ρAX and ρAF and showed that AVs with a small ρAX 
could also be effective if the size of ρAF is relatively large. Intuitively, because latent 
factor scores can be considered entirely missing, the factor correlation estimate is more 
accurate when including AVs that correlate highly with the latent factor scores. Given a 
value of ρAX, a larger ρAF is accompanied by a smaller λ, which leads to a higher bias 
when the listwise deletion is applied. If the sample size is enough, including the AVs can 
largely improve the estimation accuracy. Even if the sample size is small, including the 
AVs that have high ρAF still improve the estimation accuracy greatly, compared with 
listwise deletion. 

Our results showed that including AVs with ρAF as low as 0.3 can substantially 
increase the estimation accuracy when at least 25% missingness exists. With 10% 
missingness, ρAF needs to be 0.5 in order for the AVs to contribute to a noticeable 
improvement in estimation accuracy. Although the influence of ρAF on the effectiveness 
of AVs is not that important when ρAF is held constant, ρAX can be easily obtained by 
requesting a FIML correlation matrix among the studied variables and AVs. When 
selecting AVs from many candidates, we suggest that one can follow a two-step 
procedure. First, examine the values of ρAX estimated by FIML because a very small ρAX 
(i.e., < 0.2) suggests either the loading or ρAF is extremely small. Therefore, we can 
quickly remove the AVs that have ρAX smaller than 0.2. Second, for the remaining 
candidate AVs, careful consideration of ρAF is critical. Because the value of ρAF is not 
provided by the data, the second step thus requires researchers’ substantive understanding 
of the variables. We recommend selecting AVs that are, in theory, correlated with the 
investigated latent factors in the model of interest. Note that new methods have been 
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proposed to improve the practice of selecting AVs (e.g., Raykov and Marcoulides, 2014), 
which are beyond the scope of the present study. 

Another difficulty of the application of inclusive strategy is that including ineffective 
AVs can potentially increase inadmissible solution rates, particularly when too many 
AVs exist (Savalei and Bentler, 2009). However, there exists no definite answer 
regarding the maximum number of auxiliary variables researchers should include. After 
identifying a set of auxiliary variables that are potentially helpful, researchers can 
conduct sensitivity analyses to investigate whether a set of auxiliary variables results in 
non-convergence. If non-convergence occurs, a smaller set of auxiliary variables could 
then be considered. Previous simulation studies focused on analyses where only 
ineffective AVs (i.e., random noises) were included (e.g., Collins et al., 2001; Enders, 
2008; Graham, 2003) but did not consider the analyses in which both effective and 
ineffective AVs were included. Our simulation results showed that when both effective 
and ineffective AVs are included in the saturated model, the parameter estimates are as 
accurate as those from including the effective AVs only, and the inadmissible solution 
rates may decrease compared with the analyses with no AVs at all and the analyses with 
only the ineffective AVs. 

The use of AVs has several other limitations that require further investigation. First, 
Savalei and Bentler (2009) pointed out the potential under-identification issue of the 
saturated model under conditions with large model sizes and many AVs. Savalei and 
Bentler (2009) also illustrated an awkward feature of the saturated model. That is, the 
saturated model can result in a non-positive definite error covariance matrix, leading to 
results that may not make sense. Second, while Graham (2003) did not find any type of 
auxiliary variable that could degrade the estimation accuracy, Thoemmes and Rose 
(2014) brought up a situation where the inclusion of AVs can increase bias in missing 
data analysis. Thoemmes and Rose (2014) showed that bias could be introduced when an 
auxiliary variable is a collider variable (Pearl, 2000). A collider AV is the type of AV that 
introduces a covariance between a dependent variable and the missingness of that 
dependent variable and thus introduces MNAR when the collider AV is included in the 
saturated model. However, Thoemmes and Rose (2014) did not propose methods for 
detecting collider AVs in practice, which requires further investigation. 

The current simulation design is limited in several aspects. For example, generated 
data were continuous and followed multivariate normal distributions. Behavioural 
research typically involves Likert-type items or non-normally distributed data. More 
complicated data distributions can result in lower estimation accuracy in general and 
higher inadmissible solution rates, which requires more replications in the simulation 
design. Our simulation is also limited in how missing data were generated. Collins et al. 
(2001) have shown that different missing data generation methods (e.g., whether the 
probability of missingness and an AV has a linear or nonlinear relationship) can result in 
different levels of bias. Additionally, although the results of fit indices were not reported, 
the authors of the current study found that RMSEA, CFI, and TLI were generally not 
influenced by the choice of AVs mainly because the current study only analysed correctly 
specified models. It is expected that under misspecified models, the choice of AVs could 
impact model goodness of fit. Despite the limitations, the overarching goal of the present 
study is to raise the awareness of the investigated missing data pattern where a portion of 
participants skips all studied variables but provides data to AVs. We hope that 
methodologists will incorporate the investigated missing data pattern into their simulation 
studies in the future because of its prevalence in behavioural research. 
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Notes 
1 Analyses with a smaller number of B variables (starting from including one B variable to all 

the 10 B variables) were also implemented to understand the estimation accuracy when only a 
few correlates were included in the analyses. Results (not reported in Tables 3–5) found that, 
the more B variables included, the more accurate parameter estimates were obtained. 

Appendix 

Results for loading parameter estimates 

Tables A1–A4 present the means and empirical standard errors of estimates for the first 
loading parameter. Because all items had the same population loading value, results for 
the other loading estimates were similar and were thus not reported. 

Unlike the bias in factor correlation estimates, relative bias in loadings was in general 
smaller than 10%. Tables A1–A4 show a consistent pattern that listwise deletion, as well 
as the analytical conditions with C1–C10 included as the AVs, resulted in a small level of 
bias in loading estimates. Such bias could be reduced by including A or B1–B10 as the 
AVs, or by including all the available AVs. 
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Table A1 Parameter estimates of the first loading when sample size was 100,000 

ρAX ρAF λ Com LW A B C ALL 
   10% missingness 
0.2 0.3 0.67 0.668 0.664 0.669 0.668 0.664 0.668 
0.2 0.5 0.40 0.395 0.381 0.393 0.392 0.381 0.395 
0.2 0.7 0.29 0.279 0.261 0.279 0.277 0.261 0.279 
0.3 0.5 0.60 0.599 0.585 0.599 0.597 0.585 0.599 
0.3 0.7 0.43 0.430 0.403 0.430 0.426 0.403 0.430 
0.4 0.5 0.80 0.798 0.787 0.798 0.797 0.787 0.798 
0.4 0.7 0.57 0.575 0.547 0.575 0.572 0.547 0.575 
   25% missingness 
0.2 0.3 0.67 - 0.656 0.663 0.663 0.656 0.665 
0.2 0.5 0.40 - 0.382 0.401 0.398 0.382 0.401 
0.2 0.7 0.29 - 0.261 0.294 0.290 0.261 0.293 
0.3 0.5 0.60 - 0.578 0.603 0.598 0.578 0.602 
0.3 0.7 0.43 - 0.375 0.417 0.412 0.375 0.423 
0.4 0.5 0.80 - 0.781 0.800 0.797 0.781 0.800 
0.4 0.7 0.57 - 0.524 0.571 0.565 0.524 0.572 
   50% missingness 
0.2 0.3 0.67 - 0.659 0.669 0.667 0.659 0.669 
0.2 0.5 0.40 - 0.371 0.401 0.394 0.371 0.399 
0.2 0.7 0.29 - 0.258 0.308 0.297 0.258 0.296 
0.3 0.5 0.60 - 0.566 0.601 0.593 0.566 0.598 
0.3 0.7 0.43 - 0.357 0.420 0.408 0.357 0.427 
0.4 0.5 0.80 - 0.776 0.802 0.798 0.776 0.803 
0.4 0.7 0.57 - 0.499 0.572 0.561 0.499 0.569 

Notes: Values that had greater than 10% relative bias (i.e., > 0.33 or < 0.27) were italics; 
Com is for complete data; LW is listwise deletion; A was the direct cause of 
missingness and correlated with the variables of interests; B represented the 
analytical conditions where B1–B10 (i.e., correlates that are not the direct cause of 
missingness) were included; C represented the analytical conditions where C1–C10 
(independent random noises) were included. 
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Table A2 Means and empirical standard errors of loading estimates when sample size was 600 
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Table A3 Mean loading estimates across replications and empirical standard error of the factor 
correlation when sample size was 300 
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Table A4 Mean loading estimates across replications and empirical standard error of the factor 
correlation when sample size was 100 
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