
 
International Journal of Quantitative Research in
Education
 
ISSN online: 2049-5994 - ISSN print: 2049-5986
https://www.inderscience.com/ijqre

 
Analysing observed categorical data in SPSS AMOS: a Bayesian
approach
 
Hongwei Yang, Lihua Xu, Mark Malisa, Menglin Xu, Qintong Hu, Xing Liu, Hyungsoo
Kim, Jing Yuan
 
DOI: 10.1504/IJQRE.2023.10051888
 
Article History:
Received: 29 February 2020
Accepted: 24 March 2022
Published online: 28 March 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2022 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijqre
https://dx.doi.org/10.1504/IJQRE.2023.10051888
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   Int. J. Quantitative Research in Education, Vol. 5, No. 4, 2022 399    
 

   Copyright © 2022 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Analysing observed categorical data in SPSS AMOS: 
a Bayesian approach 

Hongwei Yang* 
University of West Florida, 
11000 University Pkwy, 
Pensacola, FL 32514, USA 
Email: pyang@uwf.edu 
*Corresponding author 

Lihua Xu 
Orange County Public Schools, 
445 W. Amelia St., 
Orlando FL 32801, USA 
Email: lihua.xu@ocps.net 

Mark Malisa 
University of West Florida, 
11000 University Pkwy, 
Pensacola, FL 32514, USA 
Email: mmalisa@uwf.edu 

Menglin Xu 
Ohio State University, 
29 W Woodruf Ave., 
Columbus, OH, 43210, USA 
Email: xumenglin920@gmail.com 

Qintong Hu 
Shandong University of Science and Technology, 
No. 579 QianWanGang Rd., Qingdao, 
Shandong, 266590, China 
Email: qhuvols@163.com 

Xing Liu 
Eastern Connecticut State University, 
83 Windham Street, 
Willimantic, CT 06226, USA 
Email: liux@easternct.edu 



   

 

   

   
 

   

   

 

   

   400 H. Yang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Hyungsoo Kim 
University of Kentucky, 
316 FB Family Sciences University of Kentucky, 
Lexington, KY 40506, USA 
Email: hkim3@uky.edu 

Jing Yuan 
Guangxi Normal University, 
Guilin, Guangxi 541003, China 
Email: 734216184@qq.com 

Abstract: This study has a didactic purpose to help applied investigators and 
practitioners to understand the roles of observed categorical data (OCD) in 
structural equation modelling (SEM) and the appropriate ways of analysing 
such data under SPSS AMOS. To that end, the study reviews types of OCD 
(nominal, ordinal, dichotomous and polytomous) and their incorporation into 
SEM under AMOS to play different roles. The study presents two applications 
from the health and retirement study where Bayesian statistical inference is 
used to analyse one set of OCD variables serving as endogenous variables 
with/without groups created by another OCD variable. Besides, the study 
demonstrates the typical ways of summarising, reporting and interpreting the 
results from Bayesian statistics, and compares AMOS with several other SEM 
programmes (Mplus, R lavaan, Stata and SAS PROC CALIS) on handling 
OCD. The study concludes with summaries of the findings for its intended 
audience. 
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1 Introduction 

Structural equation modelling (SEM) provides a powerful framework for modelling 
various complex relationships using multivariate observed data. The observed data 
analysed in SEM could be categorical as well as continuous. In many fields of studies, 
observed categorical data (OCD) are prevalent: 

1 1 = yes or 2 = no about the existence of a symptom 

2 1 = agree, 2 = neutral or 3 = disagree about a policy, among other things. 

The values assigned to the options of a categorical variable are arbitrarily selected (e.g., 0 
and 1, or 1 and 2), letters or strings. Therefore, such data are usually considered to be 
qualitative, or non-numeric even if they may be labelled in the form of discrete, numeric 
values. Given that OCD violates many assumptions of statistical models optimised for 
continuous data, the analysis of such data usually requires special considerations and 
could be challenging to some (Bhardwaj, 2015; Hadi, 2015). Besides, another challenge 
with OCD is that SEM software programmes vary significantly in terms of how to 
incorporate such data into the model for analysis. 

SPSS AMOS is a popular SEM programme among applied investigators and 
practitioners, such as those in social and behavioural sciences (Boateng, 2020; Perera, 
2013; Peterson et al., 2013). AMOS is capable of analysing OCD in multiple ways to 
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serve various research needs. However, a review of the literature indicates the categorical 
analysis capability of AMOS is not as well known as many of its other capabilities to the 
extent that some even mistakenly believe AMOS can only be used to analyse continuous 
data (Gupta, 2016; Yorgason, n.d.). Among those who have some knowledge of the 
categorical analysis features in AMOS, some still feel confused about how to properly 
interpret the analysis results (Cristofaro, 2016a, 2016b). 

Several factors may account for the lack of understanding in and inadequate use of 
AMOS for analysing OCD. For one, the only platform for handling OCD provided in 
AMOS is Bayesian SEM (Arbuckle, 2019). Bayesian statistical inference is relatively 
new and is much more technically challenging, therefore making it difficult for many 
AMOS users to even understand the Bayesian method, let alone implementing it. In fact, 
users who choose to use AMOS which is best known for its point-and-click environment 
are probably themselves not as well trained in statistics as those who choose to use 
another SEM programme (e.g., Mplus) which primarily relies on a syntax-based 
environment for model specification. For another, the literature is scant on the use and 
performance of the categorical data analysis features of AMOS, particularly little, if any, 
discussion on its Bayesian SEM platform. In the absence of such information (preferably 
having been thoroughly evaluated by peers), AMOS users mainly count on online 
discussions or informal talks for empirical evidences which may or may not be 
adequately compelling and convincing in research projects requiring scientific rigor. 

This study focuses on the handling of OCD in AMOS to familiarise applied 
investigators and practitioners with the appropriate strategies of analysing such data 
under this popular SEM programme. To that end, the study presents several routine SEM 
analyses involving different types of OCD (nominal, ordinal, dichotomous, polytomous) 
playing various roles in the model (endogenous, exogenous, creating groups). During the 
demonstrations, the Bayesian platform in AMOS is used to estimate each model and draw 
substantive conclusions through Bayesian statistical inference. 

In sum, the organisation of the study is as follows. The section that follows 
immediately discusses OCD and their common uses in SEM. Following that, the next 
section covers briefly Bayesian statistics and the Bayesian platform in AMOS, which 
precedes another section where four other SEM programmes are discussed regarding 
their OCD handling capabilities, as a comparison with the capabilities in AMOS. Then, 
using a dataset from the health and retirement study (HRS), two related numeric 
examples where different types of OCD variables play different roles are presented in 
AMOS and three of the four comparison software programmes. The study concludes with 
summaries of findings for its intended audience. 

2 Categorical data and their applications in SEM 

According to Agresti (2013), Lee and Song (2003), Lee et al. (2010) and Olsson (1979), 
an OCD variable can be dichotomous or polytomous. With both dichotomous and 
polytomous data, a distinction is made between two types of categorical scales: 

1 nominal categorical 

2 ordinal/ordered categorical. 
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Variables having categories without an ordering are measured on a nominal scale 
whereas those with an ordering on an ordinal/ordered scale. A variable’s measurement 
scale determines which statistical methods are appropriate. It is usually best to apply 
methods appropriate for the actual scale: application of the right estimator capable of 
handling data specified/declared to be measured on a certain scale (e.g., continuous, 
categorical, etc.) (Li, 2021). Many SEM software programmes, like Mplus, R lavaan, 
Stata and AMOS, allow the specification of individual variables as categorical and also 
provide the appropriate estimators (and model structures/formulations) for handling the 
specified categorical data. When there is a mismatch between the statistical methods and 
the distribution of the data (e.g., statistical methods designed for nominal categorical data 
applied to ordinal categorical data, and vice versa), misleading results may occur. For 
example, Lee et al. (2010, pp.294–296) identified inflated standard errors when a 
statistical method designed for ordinal dichotomous data was applied to nominal 
dichotomous data, and vice versa. Finally, when used in SEM, an OCD variable can be 
an endogenous variable, but it can also serve a different purpose than being endogenous 
(i.e., non-endogenous). 

2.1 OCD endogenous variable 

When an OCD variable is endogenous in a model specified in AMOS, it should be 
(declared as) ordinal (including ordinal dichotomous data) in order for the software to 
properly deal with it (at least, not treating it the same way as a continuous variable). To 
declare a categorical variable as ordinal/ordered categorical, the allow non-numeric data 
box in the data files window (found under file/data files) should be checked first. Next, 
the categorical variable should be declared as ordered-categorical within the data recode 
window (found under tools). With the declaration completed, AMOS will use an ordinal 
probit model formulation to analyse the OCD endogenous variable in an ordinal probit 
regression. This declaration process should be repeated for each OCD endogenous 
variable in the model. 

For each OCD endogenous variable which has been declared as ordinal, a continuous 
latent distribution is assumed to be underlying the ordered response categories. There are 
response boundaries or thresholds associated with the underlying continuous distribution, 
with which to progress from one response category to the next (e.g., from agree to 
strongly agree in a five-point Likert scale item). For an OCD variable with k categories, a 
total of (k – 1) response boundaries are needed. In AMOS, after a variable has been 
declared as ordered categorical, the boundaries can be either user-specified or 
automatically determined by the software. 

Finally, as of this writing, AMOS is still not able to process nominal (including 
nominal dichotomous) endogenous data where the categories are not ordered. Although, 
within the ordered-categorical window, such a variable can nevertheless be declared as 
ordinal categorical so that AMOS will not treat it as a continuous variable, the literature 
indicates this practice is likely to lead to misleading results [Lee et al., (2010),  
pp.294–296]. 

2.2 OCD non-endogenous variable 

When an OCD variable is not endogenous, it can play one of multiple roles. First, it can 
be exogenous. In this instance, AMOS should be set up to treat it as a continuous 
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variable. Therefore, regardless of whether the OCD variable (e.g., with k categories) is 
ordinal or nominal, replacing it with (k – 1) dummy indicator variables is always a viable 
option, which is similar to how a categorical predictor is handled in a multiple linear 
regression analysis. The dummy variables for replacing the OCD exogenous variable 
have to be created manually outside AMOS (e.g., in SPSS Statistics) which has little, if 
any, data management and manipulation capability. Besides, if the OCD exogenous 
variable is ordinal, allocating to the categories a set of numeric codes (e.g., 1, 2, 3, …), 
whose ordering is consistent with the ordering of the categories, and analysing these 
ordered numeric codes as if they were the values of a continuous variable is a second 
viable, but also sub-optimal option due to the arbitrary metric for the categories of the 
ordinal OCD exogenous variable created by the arbitrarily allocated numeric codes 
[Kutner et al., (2005), pp.321–322]. 

Next, besides being exogenous, an OCD non-endogenous variable can also serve to 
create groups for comparison based on its categories (i.e., multi-group analysis or MGA 
(e.g., for testing moderated mediation) versus single group analysis or SGA) (IBM SPSS, 
2020). In particular, when the model is formulated as a factor analytic model  
(i.e., measurement model), MGA usually serves as an analysis of measurement 
invariance for evaluating if the same construct(s) is/are being measured similarly across 
specified groups. Finally, when the structural equation model goes beyond a 
measurement model to also include the structural relationships, MGA can be 
implemented to find out if a structural coefficient is significantly different across the 
groups specified by the categories of the OCD non-endogenous variable. 

3 Bayesian statistics and AMOS Bayesian SEM 

Over the past decades, Bayesian estimation has become increasingly widely used in 
social and behavioural sciences, including structural equation modelling (Depaoli, 2021; 
Lee, 2007; Song and Lee, 2012), item response theory (Chang and Sheng, 2017; Fox, 
2010; Kuo and Sheng, 2015, 2016, 2017; Sheng, 2015, 2017a, 2017b), statistics and 
psychometrics in general (Gill and Walker, 2005; Gill, 2007; Gill and Witko, 2013; 
Jackman, 2009; Kaplan, 2014; Kruschke, 2014; Levy and Mislevy, 2016; Lynch, 2007; 
van de Schoot et al., 2014; Wagner and Gill, 2005; Wang and Preacher, 2015; Yuan and 
MacKinnon, 2009), among others. Bayesian statistics is based on the Bayes theorem and 
treats parameters as random quantities represented using probability distributions. 
Bayesian statistics aims to obtain the posterior distributions of parameters, given: 

1 the data (combined with the model specification to derive the likelihood function) 

2 the prior knowledge. 

It is the summaries (posterior means, posterior standard deviations (SD), etc.) of the 
random parameter values obtained from the posterior distributions that are usually 
reported and interpreted at the conclusion of a Bayesian analysis. 

A central task in Bayesian statistics is to conduct statistical inference using the 
posterior distributions of model parameters. In most practical applications, the posterior 
distribution cannot be derived by analytical means, and therefore simulation-based 
Markov chain Monte Carlo (MCMC) methods are frequently used to approximate and 
sample the posterior distribution. Usually, an MCMC process begins with a burn-in 
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period when the samples are drawn/simulated through one or more constructed Markov 
chains and subsequently discarded (i.e., not used in approximating the posterior 
distribution) to minimise the effects of initial values of the model parameter vector on the 
posterior inference. Notably, AMOS further defines and implements a pre-burn-in period 
with which to get past those values of the parameter vector which are of very low 
probability (IBM SPSS, 2018). After the burn-in period ends, the samples continue to be 
simulated through the chains to approximate the posterior distribution. Under strict 
conditions of ergodicity and reversibility, the chains will gradually converge to an 
equilibrium distribution as the target distribution. 

In AMOS, Bayesian statistics is the only built-in platform capable of handling OCD. 
According to AMOS Development Corporation (2021a), the Bayesian platform offers 
two MCMC algorithms: 

1 random walk metropolis (RWM) 

2 Hamiltonian Monte Carlo (HMC). 

RWM is one of the earliest MCMC methods developed by Metropolis et al. (1953). 
Because RWM is conceptually simple to understand and is easy to implement, it is still 
popular in numerous applications. Basically, RWM selects a candidate point (for the 
parameter vector) θ* by taking a random perturbation around the current point (for the 
parameter vector) θ(t) (i.e., θ* = + aε) with a being a tuning parameter. The possibilities 
for the density for ε are endless, and they include the uniform distribution, the normal 
distribution (implemented in AMOS), etc. 

On the other hand, the enticing simplicity of RWM is associated with poor 
performance of the algorithm with increasing dimensionality and complexity of the target 
distribution. RWM tends to explore the target distribution slowly in high dimensional 
problems, which are typical in SEM applications, and the MCMC estimates could be 
highly biased [Betancourt, (2018), p.16]. 

Over the years, substantial research has been devoted to improving the sampling 
efficiency of MCMC algorithms. Among such research is that based on the Hamiltonian 
dynamics known as the HMC method (Neal, 2011). HMC achieves better sampling 
efficiency than RWM by using the Hamiltonian dynamics in order for the chains to more 
efficiently explore the target distribution. Specifically, HMC makes use of the gradient 
information of the posterior distribution to reduce the random walk behaviour typical in 
RWM and allow the chains to move in the direction of high probabilities. Therefore, 
HMC is capable of substantially enhancing the efficiency of MCMC simulations even for 
highly parameterised models with complex multivariate dependencies among parameters. 

Both RWM and HMC algorithms have their own parameters which influence whether 
the MCMC simulation can start (e.g., getting past the pre-burn-in period in AMOS) and 
the speed at which the simulation converges to a stationary distribution. In AMOS, RWM 
has one tuning parameter which represents the random perturbation around the current 
point of the parameter vector; HMC has two parameters representing, respectively, the 
number of leapfrog steps and the leapfrog step size. 

Unfortunately, as of this writing, there is little literature on the proper selection of 
these MCMC parameter values in AMOS. The study recommends the default settings of 
each MCMC algorithm be used. In the case of any difficulty in getting the algorithm to 
start or the algorithm taking too long to reach convergence, one solution is to click the 
wrench-shaped adapt button in AMOS Bayesian SEM to have the software automatically 
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adjust the parameter(s) of the MCMC algorithm. The adjustment is made by using the 
information contained in the MCMC samples already simulated. Besides, an alternative 
solution is to take a trial-and-error approach to experiment with a variety of MCMC 
parameter values to see which one/ones performs/perform the best. This approach may be 
easier with the RWM algorithm with only one parameter to adjust. 

4 Comparisons with other SEM software programmes 

For the purpose of comparison, besides AMOS, also discussed and demonstrated here are 
several other SEM programmes: 

1 Mplus 

2 R lavaan 

3 Stata 

4 SAS PROC CALIS (discussion only). 

These programmes have stable releases and, as of this writing, are well-maintained. More 
importantly, they are among those most widely used in SEM applications from various 
fields of studies. Out of these comparison SEM software programmes, R lavaan is the 
only non-commercial programme which does not require a paid license; SAS PROC 
CALIS is the only programme which only offers estimators for handling non-normal (not 
necessarily categorical, though) data but without also providing the capability of 
specifying individual variables as categorical or the appropriate model 
structure/formulation for handling OCD. 

Mplus provides a CATEGORICAL (for ordinal categorical data) option and a 
NOMINAL (for nominal categorical data) option to deal with OCD endogenous variables 
including dichotomous data (Muthén and Muthén, 2017). These options should not be 
applied to OCD exogenous variables, though. When an exogenous variable in a model is 
declared to be categorical (nominal or ordinal), Mplus will stop executing the code and 
issue an error. In other words, Mplus treats the values of exogenous variables, including 
those of dummy indicators of categories, as continuous data. Next, in Mplus, the 
estimation of a model with OCD endogenous data could, but does not have to, rely on the 
Bayesian estimator. The software provides two frequentist estimators for that purpose: 

1 a weighted least squares (WLS) estimator (probit regression) 

2 a maximum likelihood (ML) estimator (logistic regression). 

When the OCD endogenous data (including dichotomous data) are ordinal, all three 
estimators (Bayesian, WLS and ML) mentioned above can be used; when the OCD 
endogenous data (including the dichotomous data) are nominal, only the ML estimator 
can be used. 

The lavaan package in R is capable of handling ordinal OCD endogenous data 
including dichotomous data (Rosseel, 2012). However, as of version 0.6–5, R lavaan 
provides no support for nominal OCD endogenous variables. Regarding the estimation of 
a model containing one or more ordinal OCD endogenous variables, the lavaan package 
provides both a three-stage WLS method and a pairwise likelihood method (Katsikatsou, 
n.d.; Rosseel, 2020). To invoke either estimator, the data should be declared as 
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categorical in the data frame containing the data (i.e., base::ordered() function) or, 
alternatively, in one of the model estimation functions (e.g., lavaan::cfa(), lavaan::sem() 
or lavaan::lavaan() function). Finally, when an exogenous variable in a model is declared 
as ordinal categorical, R lavaan will continue to execute the code but also issue a 
warning. 

Stata offers a gsem command which allows the incorporation of OCD endogenous 
variables into the model through the generalised linear modelling framework (StataCorp, 
2021). To properly use the command, the user should be familiar with statistical concepts 
like link function and distribution of the random component, which may be challenging 
to some. Even though Mplus, R lavaan and AMOS also use the generalised linear 
modelling framework when it comes to OCD endogenous variables, their choice of and 
reliance on easier-to-understand syntax key words or an intuitive point-and-click 
interface make them more user-friendly than Stata requiring statistical jargons as the 
input. Finally, Stata does not allow the specification of an exogenous variable as 
categorical (nominal or ordinal), so any such variable should be first dummy-coded to 
create indicators of categories which are subsequently treated as continuous data. 

Finally, compared with all the other programmes previously discussed, PROC CALIS 
in SAS offers only limited features in handling OCD variables in SEM. The instructions 
on using these features are found only in a usage note on the SAS company website but 
not in the official documentation of PROC CALIS (SAS Institute, 2017, 2018). In the 
usage note, two solutions are provided. First, PROC CALIS provides two estimators, 
METHOD=WLS and METHOD=MLM, which are capable of producing asymptotically 
unbiased parameter estimates and adjusting the standard errors for non-normal data 
(again, non-normal data are not necessarily categorical). The two estimators can work 
with a dataset including dichotomous or ordinal data regardless of whether there are also 
continuous variables. However, the note does not indicate PROC CALIS allows an OCD 
endogenous variable to be analysed as a generalised linear model (e.g., probit regression, 
already a built-in feature in the other SEM programmes). Second, PROC CALIS could 
also accept the input of a covariance matrix that is based on the polychoric and polyserial 
correlations from OCD variables. This covariance matrix is treated as if it were the 
covariance matrix from continuous variables and thus could be analysed under any 
estimation method. However, the note does not specifically indicate how to compute this 
covariance matrix from the polychoric or the polyserial correlation matrix. A further 
conversation with the SAS Technical Support team suggested the covariance matrix was 
just the correlation matrix (i.e., correlations treated as covariances in the input covariance 
matrix for PROC CALIS to analyse) (SAS Technical Support Statistics, personal 
communication, October 5, 2021). 

5 Numeric examples 

5.1 Research context 

This dataset used in the two demonstrations comes from the 2010 HRS. The HRS is a 
panel study of middle-aged and older Americans and provides both health-related 
outcomes (e.g., lifestyle, chronic conditions) and financial status variables (e.g., income, 
wealth). In 2010, the HRS included an additional module of 16 items measuring health 
literacy (HealthLiteracy). With a composite dichotomous health literacy measure created 
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from the 16 items (Brockett et al., 2002), it was possible to investigate the effect of health 
literacy on retirement worth. Out of a total of 1,308 participants asked to respond to the 
special module, 1,069 of them completed the assessment and their responses are analysed 
in this study. Table 1 outlines the variables used in the demonstrations, particularly 
whether an OCD is actually coded as ordered-categorical in AMOS. Notably, the OCD 
exogenous variable HealthLiteracy is dichotomous consisting of 0’s and 1’s. This 
variable is used as a continuous variable. For one, to stay consistent with the other SEM 
programmes. As has been discussed above, other software programmes (e.g., Mplus) 
could run into issues when an exogenous variable is declared as categorical. For another, 
when this variable is specified as ordered-categorical in AMOS, the Bayesian algorithm 
sometimes has difficulty getting past the pre-burn-in period. Finally, AMOS is set up to 
automatically decide the boundaries of each ordered categorical variable. 
Table 1 Summary of variables in the conceptual model 

Variable 
type Variable name Values 

Number of 
categories, if 
applicable 

Role in the 
model 

Coded as 
ordered-

categorical 
Categorical HealthLiteracy 1 = High; 

0 = Low 
Two Exogenous No 

Categorical Smoke 1 = No; 
0 = Yes 

Two Endogenous Yes 

Categorical ExerciseFrequency 3 = Frequent; 
2 = Occasional; 

1 = Never 

Three Endogenous Yes 

Continuous LogIncome Household 
income on the 
logarithm scale 

N/A Endogenous NA 

Continuous LogNetWorth Retirement net 
worth (wealth) 

on the logarithm 
scale 

N/A Endogenous NA 

Categorical Female 1 = Female; 
0 = Male 

Two Grouping 
(MGA) 

NA 

Using the HRS data, two demonstrations are provided on the same conceptual model 
analysed, respectively, in a single- and multi-group analysis. The MGA consists of two 
sub-analyses, respectively, for females (MGA-F) and males (MGA-M). Figure 1 presents 
the conceptual model specified by subject matter experts. In the model, the two OCD 
endogenous variables (ExerciseFrequency and Smoke) are coded as ordinal categorical in 
AMOS. For the dichotomous OCD endogenous variable Smoke, an additional step is 
taken to fix its error variance at one to prevent this variable from causing the entire model 
to become under-identified (AMOS Development Corporation, 2021b; Grace, 2009). 
Both ordinal OCD endogenous variables are handled through the probit regression 
formulation. Next, for MGA only, the conceptual model is specified to have the same 
structure (i.e., the same set of paths) across the two groups created by the OCD variable 
representing gender: Female. 

In both SGA and MGA, a default, diffuse prior distribution is specified for all model 
parameters. This default prior is a uniform distribution on the interval [–3.4 × 10–38,  
3.4 × 1038] which evidently spreads its probability over a very wide range of parameter 
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values. Because the prior distribution introduces very little information and the sample 
size is large relative to the number of model parameters (the ratio of sample size to 
number of model parameters being over 28 to 1 for MGA, and over 70 to 1 for SGA), the 
Bayesian analysis settings actually allow the data to speak for themselves. 

Figure 1 Conceptual model in SGA and MGA (see online version for colours) 

 

Notably, AMOS provides a total of three prior options. The first two options are specific 
distributions: 

1 uniform distribution (default diffuse prior as described above) 

2 normal distribution. 

The parameters of both prior distributions are adjustable in the software. The third option 
is a customisable prior which allows the user to create/draw a ‘freehand’, user-specified 
prior distribution (AMOS Development Corporation, n.d.). Given multiple priors, a 
decision on which prior to use and how to specify its parameters should be made as a part 
of invoking the Bayesian estimator in AMOS. As a general discussion on analysing 
categorical data in SEM, this study does not assume any prior knowledge that can serve 
to make the prior non-diffuse (i.e., informative). Therefore, the use of a diffuse prior as 
described above is appropriate here in that it allows the Bayesian SEM platform to be 
invoked so that the model containing the specified OCD variables can be estimated in 
AMOS without bringing in the complications from incorporating specific prior 
information into the model. Certainly, under a different research context, there could well 
be prior knowledge that should be properly addressed through the selection of the right 
prior distribution and the appropriate specification of its parameters, a critically important 
topic in Bayesian statistics. Because the topic is beyond the scope of the study, the 
readers are referred to the following studies for additional, up-to-date instructions: 
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Arbuckle (2019, p.405), Depaoli (2021, pp.34–42), Gelman et al. (2014, pp.102–104), 
Gill (2015, pp.97–143), Jackman (2009, pp.15–18, pp.80–97), Kaplan (2014, pp.17–22), 
and Song and Lee (2012, pp.35–40). 

Next, to run Bayesian SEM in both SGA and MGA, the RWM method (random  
seed = 103,828,397, tuning parameter a = 0.70) is used to approximate the posterior 
distribution. Following Skrondal and Rabe-Hesketh (2004, p.213), the upper limit of 
25,000 burn-in observations is taken to maximise the chance of stabilisation of the (only) 
chain and convergence on the posterior distribution. After the burn-in process ends, the 
sampling continues and is monitored for the convergence of MCMC. AMOS provides a 
convergence statistic (CS) for the overall model and for each individual parameter. The 
CS is a modified version of the potential scale reduction factor (PSRF) statistic by 
Gelman et al. (2014, p.285). Arbuckle (2019) provides a threshold of 1.002 for the CS 
statistic for assessing convergence. Using the CS and several other measures, the study 
assesses the convergence of each model in the following way: 

1 the overall and individual convergence statistics each drop to below 1.002 and 
become stabilised there 

2 the posterior probability density plots for individual parameters are each 
approximating a normal density 

3 the trace plots for individual parameters each exhibit a tight, horizontal band. No 
long term trend is identified in each trace plot 

4 the autocorrelation plots for individual parameters each drop to close to zero (no 
higher than 0.15). 

The graphics outlined above are not included here in the interest of space, but are 
available upon request. To learn more about assessing MCMC convergence and other 
Bayesian diagnostics, please also refer to the previously recommended readings on 
Bayesian statistics. 

In the end, the two models are also analysed under three of the four comparison 
software programmes to assess the consistency of parameter estimates across different 
software programmes: 

1 Mplus 

2 R lavaan 

3 Stata. 

However, this study does not use SAS PROC CALIS to estimate the models because of 
its limitations discussed above. 

5.2 Bayesian estimation results and interpretation 

Tables 2 and 3 present the SGA and MGA posterior summaries of unstandardised 
parameter estimates. Following Kaplan (2014), interpreted as the Bayesian point estimate 
is each posterior mean (i.e., expected a posteriori or EAP). Also included in both tables 
are posterior standard deviation, 95% posterior probability interval (PPI) signifying a 
95% probability that the effect falls into its lower and upper limits and the probability 
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estimate for Bayesian hypothesis testing (Bayesian p-value) that the effect is less than or 
equal to zero [Arbuckle, (2019), p.404; Gill, (2007), p.237]. 
Table 2 Posterior summary of paths from single group analysis 

Paths EAP1 S.D. 95% PPI 
lower 

95% PPI 
upper 

Bayesian 
p-value 

HealthLiteracy → LogNetWorth (a) 1.486 0.381 0.735 2.235 0.000 
HealthLiteracy → Smoke (b) 0.240 0.124 –0.004 0.479 0.027 
HealthLiteracy → ExerciseFrequency 
(c) 

0.577 0.184 0.220 0.943 0.001 

Smoke → LogIncome (d) 0.167 0.059 0.047 0.279 0.004 
ExerciseFrequency → LogIncome (e) 0.143 0.028 0.089 0.200 0.000 
LogIncome→LogNetWorth (f) 0.969 0.098 0.776 1.161 0.000 

Notes: 1EAP = expected A posteriori. 
Results obtained using the random walk MCMC provided in SPSS AMOS 25 with 
a tuning parameter of 0.70, a random seed of 103,828,397, a burn-in sample of 
25,000 observations, a posterior sample of 27,920 observations and a thinning 
factor of 4. 

Table 3 Posterior summary of paths from multi-group analysis (MGA-F/MGA-M) 

Paths EAP1 S.D. 95%  
PPI lower 

95%  
PPI upper 

Bayesian  
p-value 

HealthLiteracy →  
LogNetWorth (a) 

0.885/2.067 0.562/0.538 –0.217/1.014 1.996/3.120 0.058/0.000 

HealthLiteracy →  
Smoke (b) 

0.253/0.207 0.172/0.185 –0.087/–0.164 0.590/0.562 0.071/0.131 

HealthLiteracy →  
ExerciseFrequency (c) 

0.672/0.636 0.238/0.300 0.217/0.059 1.155/1.244 0.002/0.016 

Smoke →  
LogIncome (d) 

0.158/0.178 0.077/0.087 0.001/0.001 0.305/0.342 0.024/0.024 

ExerciseFrequency →  
LogIncome (e) 

0.137/0.134 0.039/0.039 0.063/0.058 0.216/0.214 0.000/0.000 

LogIncome →  
LogNetWorth (f) 

1.079/0.909 0.180/0.116 0.723/0.679 1.433/1.136 0.000/0.000 

Notes: 1EAP = expected A posteriori. 
Results obtained using the random walk MCMC provided in SPSS AMOS 25 with 
a tuning parameter of 0.70, a random seed of 103,828,397, a burn-in sample of 
25,000 observations, a posterior sample of 29,837 observations and a thinning 
factor of 4. 

In Table 2 outlining the SGA results, it is observed that the unstandardised EAP estimate 
for the direct effect of health literacy on net worth (path a) is 1.486, with a posterior 
standard deviation of 0.381. The EAP is positive, indicating that a higher value on health 
literacy is associated with a higher net worth. The 95% PPI indicates there is a 95% 
probability that the direct effect of health literacy on net worth is between 0.735 and 
2.235. Next, based on an EAP of 0.240 and 0.577, people in the high health literacy 
group are more likely not to smoke but are more likely to exercise more frequently. The 
path for not smoking is associated with a 95% PPI, [–0.004, 0.479], that contains zero, 
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indicating zero is a credible value for this effect, but the probability is only 0.027 of this 
effect being equal to or less than zero. Next, for paths d and e, the EAP estimates of 0.167 
and 0.143 suggest no smoking and more intensive exercise are expected to be associated 
with higher household income. Finally, the last path connecting income with retirement 
wealth indicates, as income increases, so does retirement wealth. Since the 95% PPI, 
[0.776, 1.161], for this path does not contain zero, zero is not a credible value for this 
effect. Based on the Bayesian p-value, the probability is (extremely close to) zero of this 
path being less than or equal to zero. 
Table 4 Posterior summary of differences in paths from multi-group analysis  

(difference = MGA-F – MGA-M) 

Paths EAP1 S.D. 95%  
PPI lower 

95%  
PPI upper 

Bayesian  
p-value 

HealthLiteracy → 
LogNetWorth (a) 

–1.182 0.776 –2.717 0.330 0.936 

HealthLiteracy → 
Smoke (b) 

0.046 0.252 –0.448 0.540 0.429 

HealthLiteracy → 
ExerciseFrequency (c) 

0.036 0.384 –0.720 0.784 0.460 

Smoke →  
LogIncome (d) 

–0.020 0.116 –0.247 0.210 0.570 

ExerciseFrequency → 
LogIncome (e) 

0.004 0.056 –0.106 0.113 0.474 

LogIncome → 
LogNetWorth (f) 

0.170 0.213 –0.246 0.588 0.212 

Notes: 1EAP = expected A posteriori. 
Results obtained using the random walk MCMC provided in SPSS AMOS 25 with 
a tuning parameter of 0.70, a random seed of 103,828,397, a burn-in sample of 
25,000 observations, a posterior sample of 29,837 observations and a thinning 
factor of 4. 

In Tables 3 and 4 outlining the MGA results, they focus on assessing if the paths are 
different across groups (difference = MGA-F – MGA-M), which is essentially a test of 
the moderation effects of gender on direct and indirect effects in the conceptual model 
(Wang and Preacher, 2015). Notably, the posterior distributions for between-group 
parameter differences are not directly available from AMOS. So, user-defined estimands 
(Custom Estimands) are coded in AMOS to obtain those posterior distributions for 
Bayesian statistical inference. Table 4 provides a posterior summary of these parameter 
differences. Because all 95% PPIs contain zero as a credible value, the relationships from 
these paths largely remain invariant (i.e., absence of the moderation effects of gender) 
across the two groups. For path a only, its Bayesian p-value indicates the probability is as 
high as 0.936 that this path is less than or equal to zero, suggesting the strength of this 
unstandardised path for the female group is very likely to be less than that for the male 
group [Kline, (2016), p.395]. 

Together with unstandardised estimates, also computed are standardised estimates 
and several functions of unstandardised and standardised estimates. Many times, these 
computations have to be based on user-defined, custom estimands in AMOS. Sample 
AMOS script in the form of Visual Basic code for performing these computations is 
presented in two appendices: 
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1 Appendix A for SGA 

2 Appendix B for MGA comparing groups of males and females. 

5.3 Comparison with Mplus, R lavaan and Stata 

The two models are also analysed using Mplus, R lavaan, and Stata to assess how 
consistent the estimates are across AMOS and these comparison programmes. Examined 
here are the unstandardised estimates of nine parameters under three different types from 
the four software programmes (for AMOS, it is only the EAP estimates from the 
Bayesian results): 

1 five paths (a, b, c, d, and e) 

2 two intercepts of the continuous endogenous variables (int_W for LogNetWorth, and 
int_I for LogIncome) 

3 two variances of the disturbances of the two continuous endogenous variables (d_W 
for LogNetWorth, and d_I for LogIncome). 

First, the pairwise Pearson correlations between the four sets of parameter estimates from 
the four software programmes demonstrate the parameter estimates exhibit a highly 
similar pattern across the programmes. Under SGA, the correlations are all as high as 
0.999. Under MGA-F, the correlations range from 0.996 to 0.999, and under MGA-M, 
the correlations range from 0.991 to 0.999. 

Second, Figure 2 presents an overlay of the four line charts from the SGA 
documenting the parameter estimates. Figure 3 presents the same set of estimates under 
MGA: MGA-F [Figure 3(a)] and MGA-M [Figure 3(b)]. Based on Figure 2, the four 
software programmes are pretty close in terms of these parameter estimates, as is 
evidenced by the substantial overlap of the four line charts across the nine parameters. 
Based on Figure 3, a similar conclusion may be drawn on most of the nine parameters. 
However, evident differences are found between AMOS and the other three comparison 
programmes on three of the nine parameters: 

1 regression path a 

2 disturbance variance d_W 

3 intercept int_W. 

Third, separately under SGA, MGA-F and MGA-M, the study computes the absolute 
value differences in parameter estimates between each pair of software programmes, 
leading to six variables representing these absolute value differences. Sequentially in two 
steps, the study further summarises the computed differences using four descriptive 
statistics (means, standard deviations, minimums and maximums) when taking into 
account parameter type (i.e., paths, intercepts and variances) and software comparison in 
pairs. 

In step one, within each of the six absolute value difference variables, the four 
descriptive statistics are computed within each parameter type, therefore resulting in four 
descriptive statistics summarising each of the three types of parameters under each of the 
six difference variables. These four descriptive statistics within each combination of 
parameter type and difference variable are next further summarised. 
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Figure 2 Single group analysis results under R, Mplus, Stata and AMOS (see online version  
for colours) 

 

In step two, two separate approaches are taken on the descriptive statistics from step one. 
In approach one, within each parameter type, each of the four descriptive statistics is 
averaged across all six difference variables to arrive at four means of the descriptive 
statistics (i.e., four means for each of the three parameter types: a total of 4 * 3 = 12 
means). In approach two, within each difference variable, each of the four descriptive 
statistics is averaged across all three parameter types to arrive at another four means of 
the descriptive statistics (i.e., four means for each of the six difference variables: a total 
of 4 * 6 = 24 means). 

The outlined process is conducted separately for the three analyses of SGA, MGA-F, 
and MGA-M. The 4 * 3 = 12 means from each analysis under approach one are presented 
using line charts in Figure 4 and the 4 * 6 = 24 means from each analysis under approach 
two presented in Figure 5. In both figures, the means are in the vertical axis. The 
horizontal axis in Figure 4 represents parameter type, and that in Figure 5 software pair 
under comparison. 

Figure 4 demonstrates similar patterns in three of the four subfigures: 

1 means (top left) 

2 standard deviations (top right) 

3 maximums (bottom right). 
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Figure 3 Multi-group analysis results under R, Mplus, Stata and AMOS, (a) female group 
(MGA-F) (b) male group (MGA-M) (see online version for colours) 

 
(a) 

 
(b) 
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Figure 4 Mean of descriptive statistics of absolute value differences by parameter type  
(see online version for colours) 

 

Taking as an example the subfigure for means (i.e., mean discrepancies in the absolute 
value differences between the software programmes), the SGA line chart is almost 
completely horizontal running through the zero of the vertical axis, suggesting that the 
mean discrepancies in the absolute value differences between the software programmes 
tend to be zero and this pattern is true of all three parameter types. Next, the two MGA 
line charts deviate noticeably away from being horizontal, the MGA-M chart in 
particular. Therefore, under MGA, the mean discrepancies in the absolute value 
differences between the software programmes do not tend to be consistent across the 
three parameter types: on average, minimum, intermediate and maximum mean 
discrepancies exhibited, respectively, in paths, intercepts, and variances. Next, similar 
patterns are found in the subfigures for standard deviations and maximums. Finally, the 
line charts for the minimum discrepancies in the absolute value differences between the 
software programmes demonstrate that the minimum discrepancies tend to be zero, and 
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this pattern is largely consistent across all three parameter types and across all three 
analyses. 

Figure 5 Mean of descriptive statistics of absolute value differences by software pair (see online 
version for colours) 

 

Figure 5 can be interpreted in a way similar to Figure 4 because the patterns in its four 
subfigures are similar to their counterparts in Figure 4. Taking as an example the 
subfigure for means (i.e., mean discrepancies in the absolute value differences between 
the software programmes), the SGA line chart is almost completely horizontal running 
through the zero of the vertical axis, suggesting that the mean discrepancies in the 
absolute value differences between the software programmes tend to be zero and this 
pattern is true of all six software comparisons. Next, the two MGA line charts overlap 
with the SGA chart on three of the six software comparisons not involving AMOS, but 
deviate noticeably away from the SGA chart on the other three comparisons involving 
AMOS, the MGA-M chart in particular. Therefore, under MGA, the mean discrepancies 
in the absolute value differences between the software programmes do not tend to be 
consistent across the six software comparisons: on average, smaller mean discrepancies 
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in comparisons not involving AMOS than in comparisons involving AMOS. Next, 
similar patterns are found in the subfigures for standard deviations and maximums. 
Finally, the line charts for the minimum discrepancies in the absolute value differences 
between the software programmes demonstrate that the minimum discrepancies tend to 
be zero, and this pattern is largely consistent across all six software comparisons and 
across all three analyses. 

6 Discussion 

This study provides a didactic demonstration of the features of AMOS for handling OCD 
variables under both SGA and MGA, compares AMOS with several other SEM software 
programmes (Mplus, R lavaan, Stata and SAS PROC CALIS) on these features, and also 
assesses the consistency of parameter estimates across AMOS and three of the four 
comparison programmes. An OCD variable features non-continuous data representing 
qualitative categories. Among other things, the treatment of such data depends primarily 
on whether the categorical variable is endogenous or non-endogenous (exogenous or 
creating groups) in the model and varies from one SEM software programme to another. 

When an OCD variable is endogenous, AMOS allows it to be first coded as ordinal 
categorical to prevent the software from treating it as continuous. In the programme, 
whenever a variable is specified as ordinal categorical, Bayesian SEM is the only 
estimation option available for estimating the model. If the categories of the OCD 
endogenous variable are nominal without any meaningful ordering, AMOS unfortunately 
cannot handle such data as of this writing. Besides, incorrectly treating nominal data as 
ordinal is likely to lead to inflated standard errors and misleading results [Lee et al., 
(2010), pp.294–296]. 

When an OCD variable is non-endogenous but exogenous, AMOS allows it to be 
handled in at least three different ways. First, given an OCD exogenous variable 
consisting of (k ≥ 2) categories, a usual practice is to replace it with a set of (k – 1) 
dummy variables, which is the same as the handling of a categorical predictor in a classic 
multiple linear regression model. For example, if the exogenous variable is dichotomous 
consisting of (k = 2) categories, it is to be replaced with one (= (k – 1)) dummy variable 
in the form of 0’s and 1’s. Second, if the OCD exogenous variable is ordinal, a coding 
scheme reflecting the ordering of categories may be used (e.g., 1, 2, 3, …) before next 
treating the ordinal variable in the same way as any other continuous exogenous 
variables. Third, AMOS also allows the specification of an OCD exogenous variable as 
ordinal categorical. However, in this study, doing so led to difficulty in getting the 
MCMC algorithm to move beyond the pre-burn-in period and also an extended amount of 
time to reach convergence. 

When an OCD variable is non-endogenous but represents groups of comparison, 
AMOS provides a multiple-group analysis (e.g., MGA for assessing measurement 
invariance) option. In this case, unless there are other conditions necessitating the use of 
Bayesian SEM (e.g., OCD variable specified as ordinal categorical), both Bayesian and 
frequentist (e.g., ML) estimation methods can be used. 

When comparing AMOS with Mplus, R lavaan and Stata, the study focuses on the 
consistency of parameter estimates as measured by the absolute value differences in 
parameter estimates from each pair of software programmes under SGA and MGA. 
Overall, the consistency between software programmes tends to be better in SGA than in 
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either of MGA-F and MGA-M, which might have been due to the fact that the sample 
sizes in MGA are each much smaller than that in SGA. On the other hand, the 
consistency of parameter estimates among the three comparison programmes tends to be 
better than that between AMOS and each comparison programme. However, the study is 
in no position to argue one software programme produces more accurate estimates than 
another because it is limited to just one real world dataset with no more than a handful of 
applications where the true parameter values are always unknown. For an in-depth 
investigation of the accuracy of parameter estimates, the study calls for large scale 
simulation studies under varying research contexts (e.g., varying model and/or data 
structures). 

Besides, for full transparency, the estimation methods used in each of the three 
demonstrated comparison programmes (Mplus, R lavaan and Stata) are shared here. In 
Mplus, with OCD endogenous data in the model, it is a robust WLS estimator under a 
diagonal weight matrix that is used in deriving the parameter estimates. This estimator is 
invoked by using the ESTIMATOR option of the ANALYSIS command: ESTIMATOR = 
WLSMV (Muthén and Muthén, 2017). Next, the model estimation in R lavaan is based on 
a WLS estimator as well. Specifically, R lavaan utilises a diagonally weighted least 
squares (DWLS) estimator to obtain the estimates of model parameters. After (all or part 
of) the endogenous data are declared as categorical in R lavaan, this estimator is the 
default setting and thus automatically applied, but it can also be specified using estimator 
= “DWLS” when calling one of the model estimation functions (e.g., lavaan::cfa(), 
lavaan::sem() or lavaan::lavaan() function) (Rosseel, 2012, 2020). In the end, in Stata, 
after incorporating OCD endogenous variables into the model through the generalised 
linear modelling framework, a ML estimator is used in estimating the model. Since the 
estimator is the default and also the only estimator provided in the gsem command, it is 
automatically invoked, but can also be specified using method(ml) in the command 
(StataCorp, 2021). 

Finally, when presenting the AMOS features for handling OCD, the study takes the 
opportunity to familiarise the intended readership of the study with the typical ways of 
summarising, reporting and interpreting the results of Bayesian statistical analyses 
including the appropriate language to use and references to cite from the recent literature 
of Bayesian statistics primarily in the social and behavioural sciences. It is hoped that the 
knowledge will contribute to demystifying Bayesian statistical inference and encourage 
its understanding and use among applied investigators and practitioners to solve real 
world problems. 
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Appendix 1 

AMOS Visual Basic Code for Single Group Analysis 

#Region “Header” 

Imports System 

Imports Microsoft.VisualBasic 

Imports AmosEngineLib 

Imports AmosEngineLib.AmosEngine.TMatrixID 

Imports AmosExtensions.CustomEstimand 

Imports MiscAmosTypes 

Imports MiscAmosTypes.cDatabaseFormat 

#End Region 

Public Class CEstimand 

Implements IEstimand 

Public Sub DeclareEstimands() Implements IEstimand.DeclareEstimands 

‘Custom estimands for unstandardized estimates 

newestimand(“a_unstd”) 

newestimand(“b_unstd”) 

newestimand(“c_unstd”) 

newestimand(“d_unstd”) 

newestimand(“e_unstd”) 

newestimand(“f_unstd”) 

newestimand(“path1direct_unstd”) 

newestimand(“path2indirect_Smoke_unstd”) 

newestimand(“path3indirect_ExerciseFrequency_unstd”) 

newestimand(“totalindirect_unstd”) 

newestimand(“total_unstd”) 

newestimand(“path1direct_lessthanorequaltozero_unstd”) 

newestimand(“path2indirect_Smoke_lessthanorequaltozero_unstd”) 

newestimand(“path3indirect_ExerciseFrequency_lessthanorequaltozero_unstd”) 
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newestimand(“totalindirect_lessthanorequaltozero_unstd”) 

newestimand(“total_lessthanorequaltozero_unstd”) 

End Sub 

 

Public Function CalculateEstimands(sem As AmosEngine) As String Implements 
IEstimand.CalculateEstimands 

‘Get Unstandardized Estimates. 

estimand(“a_unstd”).value = sem.GetEstimate(DirectEffects, “LogNetWorth”, 
“HealthLiteracy”) 

estimand(“b_unstd”).value = sem.GetEstimate(DirectEffects, “Smoke”, 
“HealthLiteracy”) 

estimand(“c_unstd”).value = sem.GetEstimate(DirectEffects, 
“ExerciseFrequency”, “HealthLiteracy”) 

estimand(“d_unstd”).value = sem.GetEstimate(DirectEffects, “LogIncome”, 
“Smoke”) 

estimand(“e_unstd”).value = sem.GetEstimate(DirectEffects, “LogIncome”, 
“ExerciseFrequency”) 

estimand(“f_unstd”).value = sem.GetEstimate(DirectEffects, “LogNetWorth”, 
“LogIncome”) 

estimand(“path1direct_unstd”).value=estimand(“a_unstd”).value 

estimand(“path2indirect_Smoke_unstd”).value= 

estimand(“b_unstd”).value * estimand(“d_unstd”).value * 
estimand(“f_unstd”).value 

estimand(“path3indirect_ExerciseFrequency_unstd”).value= 

estimand(“c_unstd”).value * estimand(“e_unstd”).value * 
estimand(“f_unstd”).value 

estimand(“totalindirect_unstd”).value=sem.GetEstimate(IndirectEffects, 
“LogNetWorth”, “HealthLiteracy”) 

estimand(“total_unstd”).value=sem.GetEstimate(TotalEffects, “LogNetWorth”, 
“HealthLiteracy”) 

‘Consistent with the null hypothesis (parameter <= 0) leading to Bayesian p 
value (Gill, 2008, p. 237) 

estimand(“path1direct_lessthanorequaltozero_unstd”).value=(estimand(“path1direct
_unstd”).value<=0) 

estimand(“path2indirect_Smoke_lessthanorequaltozero_unstd”).value=(estimand(“p
ath2indirect_Smoke_unstd”).value<=0) 
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estimand(“path3indirect_ExerciseFrequency_lessthanorequaltozero_unstd”).value=(
estimand(“path3indirect_ExerciseFrequency_unstd”).value<=0) 

estimand(“totalindirect_lessthanorequaltozero_unstd”).value=(estimand(“totalindirec
t_unstd”).value<=0) 

estimand(“total_lessthanorequaltozero_unstd”).value=(estimand(“total_unstd”).value
<=0) 

Return ““‘Return an empty string if no error occurred 

End Function 

End Class 

Appendix 2 

AMOS visual basic code for multi-group analysis 

#Region “Header” 

Imports System 

Imports Microsoft.VisualBasic 

Imports AmosEngineLib 

Imports AmosEngineLib.AmosEngine.TMatrixID 

Imports AmosExtensions.CustomEstimand 

Imports PBayes 

Imports MiscAmosTypes 

Imports MiscAmosTypes.cDatabaseFormat 

#End Region 

Public Class CEstimand 

Implements IEstimand 

 

Public Sub DeclareEstimands() Implements IEstimand.DeclareEstimands 

‘Your code goes here. 

‘Unstandardized effects (one direct effect plus three indirect effects) plus 
four dichotomous estimands (see the AMOS manual regarding dichotomous 
estimands) 

‘Female group 

newestimand(“a_unstd_female_1”) 

newestimand(“b_unstd_female_1”) 
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newestimand(“c_unstd_female_1”) 

newestimand(“d_unstd_female_1”) 

newestimand(“e_unstd_female_1”) 

newestimand(“f_unstd_female_1”) 

newestimand(“path1direct_unstd_female_1”) 

newestimand(“path2indirect_Smoke_unstd_female_1”) 

newestimand(“path3indirect_ExerciseFrequency_unstd_female_1”) 

newestimand(“totalindirect_unstd_female_1”) 

newestimand(“total_unstd_female_1”) 

newestimand(“path1direct_lessthanorequaltozero_unstd_female_1”) 

newestimand(“path2indirect_Smoke_lessthanorequaltozero_unstd_female_
1”) 

newestimand(“path3indirect_ExerciseFrequency_lessthanorequaltozero_unstd_f
emale_1”) 

newestimand(“totalindirect_lessthanorequaltozero_unstd_female_1”) 

newestimand(“total_lessthanorequaltozero_unstd_female_1”) 

 

‘Male group 

newestimand(“a_unstd_female_0”) 

newestimand(“b_unstd_female_0”) 

newestimand(“c_unstd_female_0”) 

newestimand(“d_unstd_female_0”) 

newestimand(“e_unstd_female_0”) 

newestimand(“f_unstd_female_0”) 

newestimand(“path1direct_unstd_female_0”) 

newestimand(“path2indirect_Smoke_unstd_female_0”) 

newestimand(“path3indirect_ExerciseFrequency_unstd_female_0”) 

newestimand(“totalindirect_unstd_female_0”) 

newestimand(“total_unstd_female_0”) 

newestimand(“path1direct_lessthanorequaltozero_unstd_female_0”) 

newestimand(“path2indirect_Smoke_lessthanorequaltozero_unstd_female_
0”) 
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newestimand(“path3indirect_ExerciseFrequency_lessthanorequaltozero_unstd_f
emale_0”) 

newestimand(“totalindirect_lessthanorequaltozero_unstd_female_0”) 

newestimand(“total_lessthanorequaltozero_unstd_female_0”) 

‘Unstandardized differences:Female = 1 MINUS Female = 0 

newestimand(“path1_diff_unstd_female_1_0”) 

newestimand(“path2_diff_unstd_female_1_0”) 

newestimand(“path3_diff_unstd_female_1_0”) 

newestimand(“path1_diff_lessthanorequaltozero_unstd_female_1_0”) 

newestimand(“path2_diff_lessthanorequaltozero_unstd_female_1_0”) 

newestimand(“path3_diff_lessthanorequaltozero_unstd_female_1_0”) 

End Sub 

Public Function CalculateEstimands(ByVal sem As AmosEngine) As String 
Implements IEstimand.CalculateEstimands 

‘Your code goes here. 

‘UNStandardized estimates: Parameters and functions of parameters 

‘Female = 1 (Group 1 model for Females) 

estimand(“a_unstd_female_1”).value = sem.GetEstimate(DirectEffects, 
“LogNetWorth”, “HealthLiteracy”, 1) 

estimand(“b_unstd_female_1”).value = sem.GetEstimate(DirectEffects, 
“Smoke”, “HealthLiteracy”, 1) 

estimand(“c_unstd_female_1”).value = sem.GetEstimate(DirectEffects, 
“ExerciseFrequency”, “HealthLiteracy”, 1) 

estimand(“d_unstd_female_1”).value = sem.GetEstimate(DirectEffects, 
“LogIncome”, “Smoke”, 1) 

estimand(“e_unstd_female_1”).value = sem.GetEstimate(DirectEffects, 
“LogIncome”, “ExerciseFrequency”, 1) 

estimand(“f_unstd_female_1”).value = sem.GetEstimate(DirectEffects, 
“LogNetWorth”, “LogIncome”, 1) 

estimand(“path1direct_unstd_female_1”).value=estimand(“a_unstd_female_1”).valu
e 

estimand(“path2indirect_Smoke_unstd_female_1”).value= 

estimand(“b_unstd_female_1”).value * 
estimand(“d_unstd_female_1”).value * 
estimand(“f_unstd_female_1”).value 

estimand(“path3indirect_ExerciseFrequency_unstd_female_1”).value= 
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estimand(“c_unstd_female_1”).value * 
estimand(“e_unstd_female_1”).value * 
estimand(“f_unstd_female_1”).value 

estimand(“totalindirect_unstd_female_1”).value=sem.GetEstimate(IndirectEffects, 
“LogNetWorth”, “HealthLiteracy”, 1) 

estimand(“total_unstd_female_1”).value=sem.GetEstimate(TotalEffects, 
“LogNetWorth”, “HealthLiteracy”, 1) 

‘Consistent with the null hypothesis (parameter <= 0) leading to Bayesian p 
value (Gill, 2008, p. 237) 

estimand(“path1direct_lessthanorequaltozero_unstd_female_1”).value=(estimand(“p
ath1direct_unstd_female_1”).value<=0) 

estimand(“path2indirect_Smoke_lessthanorequaltozero_unstd_female_1”).value=(es
timand(“path2indirect_Smoke_unstd_female_1”).value<=0) 

estimand(“path3indirect_ExerciseFrequency_lessthanorequaltozero_unstd_female_1
”).value=(estimand(“path3indirect_ExerciseFrequency_unstd_female_1”).value<=0) 

estimand(“totalindirect_lessthanorequaltozero_unstd_female_1”).value=(estimand(“t
otalindirect_unstd_female_1”).value<=0) 

 

estimand(“total_lessthanorequaltozero_unstd_female_1”).value=(estimand(“total_un
std_female_1”).value<=0) 

 ‘Female = 0 (Group 2 Model for Males) 

estimand(“a_unstd_female_0”).value = sem.GetEstimate(DirectEffects, 
“LogNetWorth”, “HealthLiteracy”, 2) 

estimand(“b_unstd_female_0”).value = sem.GetEstimate(DirectEffects, 
“Smoke”, “HealthLiteracy”, 2) 

estimand(“c_unstd_female_0”).value = sem.GetEstimate(DirectEffects, 
“ExerciseFrequency”, “HealthLiteracy”, 2) 

estimand(“d_unstd_female_0”).value = sem.GetEstimate(DirectEffects, 
“LogIncome”, “Smoke”, 2) 

estimand(“e_unstd_female_0”).value = sem.GetEstimate(DirectEffects, 
“LogIncome”, “ExerciseFrequency”, 2) 

estimand(“f_unstd_female_0”).value = sem.GetEstimate(DirectEffects, 
“LogNetWorth”, “LogIncome”, 2) 

estimand(“path1direct_unstd_female_0”).value=estimand(“a_unstd_female_0”).valu
e 

estimand(“path2indirect_Smoke_unstd_female_0”).value= 
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estimand(“b_unstd_female_0”).value * 
estimand(“d_unstd_female_0”).value * 
estimand(“f_unstd_female_0”).value 

estimand(“path3indirect_ExerciseFrequency_unstd_female_0”).value= 

estimand(“c_unstd_female_0”).value * 
estimand(“e_unstd_female_0”).value * 
estimand(“f_unstd_female_0”).value 

estimand(“totalindirect_unstd_female_0”).value=sem.GetEstimate(IndirectEffects, 
“LogNetWorth”, “HealthLiteracy”, 2)  

estimand(“total_unstd_female_0”).value=sem.GetEstimate(TotalEffects, 
“LogNetWorth”, “HealthLiteracy”, 2) 

‘Consistent with the null hypothesis (parameter <= 0) leading to Bayesian p 
value (Gill, 2008, p. 237) 

estimand(“path1direct_lessthanorequaltozero_unstd_female_0”).value=(estimand(“p
ath1direct_unstd_female_0”).value<=0) 

estimand(“path2indirect_Smoke_lessthanorequaltozero_unstd_female_0”).value=(es
timand(“path2indirect_Smoke_unstd_female_0”).value<=0 

estimand(“path3indirect_ExerciseFrequency_lessthanorequaltozero_unstd_female_0
”).value=(estimand(“path3indirect_ExerciseFrequency_unstd_female_0”).value<=0) 

estimand(“totalindirect_lessthanorequaltozero_unstd_female_0”).value=(estimand(“t
otalindirect_unstd_female_0”).value<=0) 

estimand(“total_lessthanorequaltozero_unstd_female_0”).value=(estimand(“total_un
std_female_0”).value<=0) 

‘Differences: unstandardized 

‘Female = 1 MINUS Female = 0 

estimand(“path1_diff_unstd_female_1_0”).value=estimand(“path1direct_unstd_fem
ale_1”).value - estimand(“path1direct_unstd_female_0”).value 

estimand(“path2_diff_unstd_female_1_0”).value=estimand(“path2indirect_Smoke_u
nstd_female_1”).value - estimand(“path2indirect_Smoke_unstd_female_0”).value 

estimand(“path3_diff_unstd_female_1_0”).value=estimand(“path3indirect_Exercise
Frequency_unstd_female_1”).value - 
estimand(“path3indirect_ExerciseFrequency_unstd_female_0”).value 

Differences: Unstandardized less than or equal to zero 

estimand(“path1_diff_lessthanorequaltozero_unstd_female_1_0”).value=(estimand(“
path1_diff_unstd_female_1_0”).value<=0) 

estimand(“path2_diff_lessthanorequaltozero_unstd_female_1_0”).value=(estimand(“
path2_diff_unstd_female_1_0”).value<=0) 
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estimand(“path3_diff_lessthanorequaltozero_unstd_female_1_0”).value=(estimand(“
path3_diff_unstd_female_1_0”).value<=0) 

Return ““‘Return an empty string if no error occurred 

End Function 

End Class 


