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Abstract: Cloud computing has taken the world in its strides. In cloud 
datacentres, thousands of physical machines run continuously to execute 
incoming workload. Virtual machines are provisioned to incoming requests and 
are allocated to physical machines. Efficient mapping of virtual machines to 
physical machines has potential impact on the efficiency of datacentres. This 
paper proposes two greedy heuristics for virtual machines to physical machines 
mapping. We have empirically evaluated proposed heuristics and existing 
greedy heuristics for comprehensive datasets including PlanetLab datasets. 
Thereafter we have considered issue of hotspot, and proposed two heuristics for 
hotspot mitigation. We have evaluated our proposed hotspot mitigation 
heuristics for wide varieties of cases and case of SLA violation is also taken 
into consideration. Extensive simulation shows that our proposed heuristics are 
substantially faster than their counterparts. As clouds have strong business 
perspective also, our heuristics can be seen as prime alternate options for 
virtual machines to physical machines mapping. 
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1 Introduction 

Cloud computing model has provided computing as a utility (Persico et al., 2018) just 
like electricity, water, gas, etc. in which resources are made available as a utility and give 
an illusion of having as much resources as requested by the user. This computing 
paradigm is based upon pay-as-use model in which users pay for what they have used 
only. It emerged as a new paradigm for dynamic provisioning of computing services 
supported by state-of-the-art datacentres (Yin et al., 2019) that usually employ virtual 
machine (VM) technologies for consolidation and environment isolation purposes. Earlier 
companies, irrespective of the nature of their work had to spend large amount of money 
in setting up computing infrastructures, power supply equipments, cooling equipments, 
etc. Now people are choosing clouds as better option. In Cloud computing environment, 
datacentres have thousands of physical machines (PMs) to execute incoming computing 
load. VMs are provisioned to incoming requests. Once VMs are provisioned, these are 
assigned to PMs according to some predefined policy. As cloud computing has business 
perspective also and for running a business for long-term, total cost of ownership (TCO) 
need to be reduced and return on investment (ROI) need to be increased while 
maintaining quality at the same time. Cost of energy consumption contributes a big part 
in overall expenditure of a datacentre. 

1.1 Deployment models 

Cloud computing is a style of computing in which business processes, application, data, 
and any type of IT resource can be provided as a service to the users. Cloud provider 
offers certain deployment models for consumers to opt for. 

1.1.1 Public clouds 
Public cloud services are offered by third-party datacentre provider to end-user 
consumers over the internet. Public cloud offers resource pooling, self-service, service 
accounting, elasticity, multi-tenancy to manage the solutions, deployment, and securing 
the resources and applications. Companies can use it on-demand and with the  
pay-as-you-use option, it is much like utility consumption. Enterprises are able to offload 
commodity applications to third-party service providers. The term ‘public’ does not mean 
that it is free, even though it can be free or fairly inexpensive to use. It also does not 
mean that a user’s data is publically visible – public cloud vendors typically provide an 
access control mechanism for their users. Every workload is not ready for public cloud 
today. Workloads that depend on sensitive data, normally restricted to an organisation, 
are not public today. Most companies are not ready to move their LDAP server to a 
public cloud because of the sensitivity of the employee information. Healthcare  



   

 

   

   
 

   

   

 

   

   278 V. Sharma and G.M.S. Srivastava    
 

    
 
 

   

   
 

   

   

 

   

       
 

record – until the security of the cloud provider is well established is another example. 
Some other examples include: 

• Workloads composed on various, dependent services. 

• High throughput online transaction processing. 

• Workloads requiring a high level of auditability and accountability. 

• Non-virtualised workloads and non-availability of cloud-based licensing strategy. 

• Workloads looking for complex service accounting mechanisms for different 
services for various departments-based billing. 

• Workloads requiring flexibility and customisation. 

1.1.2 Private clouds 
Private clouds are deployments made inside the company’s firewall (on-premise 
datacentres) and traditionally run by on-site servers. Private clouds offer some of the 
benefits of a public cloud computing environment, such as elastic on-demand capacity, 
self-service provisioning and service-based access. Private cloud is suitable when the 
traditional requirements, such as control, security, and resiliency, are more emphasised 
by an organisation with the restricted and designated user access and authorisation. 

1.1.2.1 Services in private cloud 
This section highlights the services provided by a private cloud and the services 
consumed from public cloud, specifically: 

• virtualisation 

• government and management 

• multi-tenancy 

• consistent deployment 

• chargeback and pricing 

• security and access control. 

1.1.2.2 High ‘cost of privacy’ 
Many experts believe a private cloud implemented with internal hosting/running of the 
infrastructure makes it difficult to realise many key benefits of clouds, including: 

• Eliminating capital expenses and operating costs: Ownership of the hardware or 
software eliminates the pay-per-use potential, as these must be upfront purchases. 
The full cost of operations must be shouldered by them as there is no elasticity. If the 
private cloud hardware is sized for peak loads, there will be inefficient excess 
capacity. Otherwise, the owner will face complex procurement cycles. 

• Removing undifferentiated heavy lifting by offloading datacentre operations: Utility 
pricing (for lower capital expenses and operating expenses) usually implies an 
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outside vendor offering on-demand services. It relies on the economies of multiple 
tenants sharing a larger pool of resources. These higher costs might be justified if the 
benefits of quicker and easier self-service provisioning and service-oriented access 
are large. 

1.1.2.3 Private clouds provide more control 
In traditional security models, location implies ownership which in turn implies control 
when security is location-specific. Then location, ownership, and control are aligned. 
Strong requirements for control and security usually drive a preference for a private 
cloud, where they own the cloud resources and control the location of those resources. 
For example, government may not want their applications or data to reside outside certain 
borders. Clouds rely on virtualisation; and in the public model, this loose coupling breaks 
the link between location and application, and reduces the perceived ownership and 
control. When we talk about the information control, it is not related to fixed geography 
or total ownership of the information. One example is public key encryption – the 
ownership of the key means control over the information without owning the rest of the 
infrastructure. The information control can be managed over the infrastructure that is 
trustful on the basis of the contracts, regulations, SLAs, standards, and imposition of the 
security mechanism on service providers. Compliance is difficult outside of traditional 
security models. As long as control through technology and contracts can be clearly 
demonstrated, it is possible to make public cloud computing environment as secure as a 
privately own facility. Auditors and regulators are continuously adapting to new 
technologies and business models. Owners can have multiple avenues as: 

• full-implementation ownership 

• lack of full ownership 

• controlled ownership. 

There are many possible approaches in between, such as partial control and shared 
ownership. There are also different levels of limited access – specific departmental 
access, industry-only access, and controlled partner access. 

1.1.3 Hybrid clouds 
A hybrid cloud is a combination of an interoperating public and private cloud. This is the 
model where consumer takes the non-critical application or information and compute 
requirements to the public cloud while keeping all the critical information and application 
data in control. The hybrid model is used by both public and private clouds 
simultaneously. It is an intermediate step in the evolution process, providing businesses 
an on-ramp from their current IT environment into the cloud. It offers the best of both 
cloud worlds – the scale and convenience of a public cloud and the control and reliability 
of on-premises software infrastructure – and let them move fluidly between the two on 
the basis of their needs. This model allows the following: 

• elasticity, which is the ability to scale capacity up or down within minutes, without 
owning the capital expense of the hardware or datacentre 

• pay-as-you-go pricing 
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• network isolation and secure connectivity as if all the resources were in a privately 
owned datacentre 

• gradually move to the public cloud configuration, replicate an entire datacentre, or 
move anywhere in between. 

1.1.4 Community clouds 
This is the cloud managed by groups of people, communities, and agencies especially 
government to have the common interests – such as maintaining the compliance, 
regulation, and security parameters – working on the same mission. The members of the 
community share access to the data and applications in the cloud. 

1.1.5 Shared private cloud 
This is a shared compute capacity with variable usage-based pricing to business units that 
are based on service offerings, accounts datacentres. It requires an internal profit centre to 
take over or buy infrastructure made available through account consolidations. 

1.1.6 Dedicated private cloud 
Dedicated private cloud has IT service catalogue with dynamic provisioning. It depends 
on standardised service-oriented architecture (SOA) architectural assets that can be 
broadly deployed into new and existing accounts and is a lower-cost model. 

1.1.7 Dynamic private cloud 
Dynamic private cloud allows client workloads to dynamically migrate to and from the 
compute cloud as needed. This model can be shared and dedicated. It delivers on the 
ultimate value of clouds. This is a very low-management model with reliable SLAs and 
scalability. 

1.2 Energy efficient datacentres 

Datacentre energy consumption (Celesti et al., 2019) has nearly quadrupled in the past 
decade. It is reported that Celesti et al. (2019), US datacentres consumed 61 billion 
kilowatt-hours of power in 2006, which constitutes 1.5% of all power consumed in the 
US and represents a cost of $4.5 billion and its electricity consumption increased by 
nearly 40% from 2007 to 2012. Recent studies show that energy consumption by 
datacentres worldwide in year 2015 and 2016 was 405 billion kWh and 473 billion kWh 
respectively (Son and Buyya, 2019). So cloud providers are seriously concerned with 
reduction of energy cost. Moreover there has been increasingly pressure from 
governments (Vasic and Kostic, 2016) all over the world for green computing. In cloud 
computing datacentres, thousand of servers run continuously to execute load and research 
shows that their processor utilisation at any time is very low due to volatile resource 
demand. So, lot of research work has been done to device many heuristics to tightly pack 
VMs into minimum number of PMs. Existing heuristics are very CPU intensive, i.e., 
require large computations for VM to PM mapping. Since this allocation of VMs to PMs 
is a frequent process, so these heuristics make the process slow and result in more energy 
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consumption indirectly. Moreover when PMs are packed with maximum number of VMs, 
SLA violation may occur in peak hours and thus require VM migration process (Rastegar 
et al., 2019) which does not come free of cost. This process becomes more costly for 
migration on different networks (Qi and Tao, 2019). Several strategies have been 
proposed by researchers for this assignment. First fit/first fit decreasing (FF/FFD) are 
commonly implemented in commercial cloud softwares. 

2 Related work 

Research work related to energy efficient computing is going on at various levels. Xiong 
et al. in 2019 worked towards increasing efficiency of cloud servers and proposed an 
algorithm for resource management dynamically. They tested their algorithm for 
reduction in the time in VM migration and network traffic if VMs are migrated to distant 
location. Since VMs stop functioning during migration, so fast migration process is still 
area of research. Beloglazov et al. in 2015 analysed the sources of high energy 
consumption of PMs and then presented the classification of energy efficient operation of 
hardware and software parts of datacentre. Pedram in 2012 explored the main cause of 
rising energy consumption in cloud datacentres and proposed techniques for energy 
efficiency. He worked towards problem formulation for energy efficient resource 
allocation. Beloglazov et al. in 2016 proposed an algorithm for dynamic allocation and 
consolidation of VMs and powering down the nodes not in use. While allocating VM to 
PM, they have used modified best fit decreasing (MBFD) algorithm which chooses that 
PM among several PMs which resulted in least increase of energy consumption. They 
worked towards SLA violation and hotspot mitigation also. “When resource requirements 
of VMs increase in peak hours and cannot be met by PM holding it, it is condition of 
hotspot. When hotspot occurs, few VMs have to be transferred from current PM to other 
PMs.” They proposed several algorithms for mitigation of hotspot like ‘minimisation of 
migration’ (MOM) and ‘random choice’. In both of these algorithms for hotspot 
mitigation, they considered single resource. In MOM, those least number of VMs were 
selected for migration which could mitigate hotspot, so that overhead of migration could 
be avoided. Xiao et al. in 2015 calculated difference among values along various 
dimensions of resource requirements (RRs) vector and tried to accommodate different 
kind of workload to improve resource utilisation of servers. Bin packing approach was 
used to map VMs to PMs. Farahnakian and Pahikkala in 2019 formulated VM placement 
problem as stochastic integer programming problem to find out PMs which have 
sufficient resources to satisfy the RRs of VMs and keeping check on energy 
consumption. Xu et al. in 2016, suggested that resource migration could be done using 
server automation that provided the capability to perform bare-metal provisioning that 
enabled to deploy OS on physical and virtual hosts consistently. Jia et al. in 2017 studied 
and analysed the consequences of re-assigning the IP addresses to different sites after 
migration of VMs. Ceselli et al. in 2017 suggested the SLA-based resource allocation 
problem for multi-tier cloud applications. Their solution was a distributed solution for 
CPU, data and network elements. The problem was formulated as a three-dimensional 
vector optimisation problem. Li et al. in 2019 presented a technique for VM allocation 
and consolidation of VMs on minimum number of servers thus reducing the energy 
consumption. Gai et al. in 2019 discussed energy efficient VMs allocations in mobile 
clouds and VM migration methodologies considering various resources. Jia et al. in 2018 
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suggested greedy particle swarm optimisation to optimise the allocation of shared 
resources to have economical VM configuration. Gao et al. in 2018 explored greedy 
heuristics for VM to PM mapping. The main function of this algorithm was to minimise 
the estimated cost and enhance the VMs configurations. Chen in 2019 studied particle 
swam optimisation for VM placement optimisation in large cloud datacentres VM to PM 
mapping. Song et al. in 2019 proposed a genetic algorithm with resources taken as 
knapsack. They started with basic solution and then refined it so that chances of hotspot 
are reduced, thus requiring VM migration less number of times and hence saving energy. 
Yao and Yu in 2019 projected a strategy for dynamic allocation of resources on demand 
and reduced the number of active servers, thus saving power. They used bin packing 
approach. Zhang et al. in 2019 presented a technique for VM allocation and consolidation 
of VMs on minimum number of servers thus reducing the energy consumption. 
Dayarathna et al. in 2016 analysed FFD variants and according to them AvgSum variant 
of FFD was best. Madani and Jamali in 2018 studied multidimensional heuristics and 
compared various variants. Gergo et al. in 2012 studied the multidimensional vector bin 
packing (VBP) problem with dynamic costs and reduction of the bin packing problem to 
the modified multidimensional vector packing. They studied the VM migration issues and 
discussed provisioning of resources to VMs in energy efficient manner. They also found 
that avoiding VM migration was a good option as it carries extra overhead and slow 
down performance. It becomes more cumbersome when VM migration was done over 
different networks. We present below research analysis in tabular form mentioning merits 
and demerits of each work. 
Table 1 Related research work 

Author Idea Technique Harnessing 
components Merits Demerits 

Celesti  
et al. (2019) 

Tightly 
packing of 

bins 

Linear 
programming 

General 
resources 

Minimum number 
of resources 

Overloaded 
resources 

Zhang et al. 
(2019) 

Comparison 
of various 

FFD variants 

Bin packing General 
resources 

Minimum 
resources 

Overloaded 
resources 

Sotiridis  
et al. (2018) 

To achieve 
minimum 

power, 
performance 
constraints 

Switching 
server power 

CPU, drive, 
network 

Less power 
consumption 

Unrealistic 
assumptions in 

workload 

Xiong et al. 
(2019) 

Minimum 
energy under 
performance 
constraints 

DVFS CPU Deep analysis of 
various aspects in 

energy saving 
techniques, SLA 

considered 

Single 
resource under 
consideration 

Beloglazov 
et al. (2015) 

Energy and 
VM 

consolidation 

FFD CPU Workload 
consolidation to 

minimum number 
of PMs, SLA 
considered 

Migration 
over network 

can slow down 
whole process 
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Table 1 Related research work (continued) 

Author Idea Technique Harnessing 
components Merits Demerits 

Farahnakian 
and 
Pahikkala 
(2019) 

Keep check 
on energy 

consumption 

Stochastic 
integer 

programming 

CPU Keeps power 
consumption 
within range 

Single 
resource under 
consideration. 
hotspot and 

coldspot 
condition not 

discussed 
Song et al. 
(2019) 

Reducing 
hotspot and 

VM migration 

Genetic 
algorithm 

CPU Chances of 
hotspot reduced 

Single 
resource under 
consideration. 
Condition of 
cold spot not 

discussed 
Yao and Yu 
(2019) 

VM 
consolidation 

Linear 
programming 

approach 

CPU Server 
consolidated. 

hotspot/coldspot 
discussed 

Single 
resource under 
consideration 

Xiao et al. 
(2015) 

Turning off 
lightly loaded 

PMs 

Bin packing CPU Workload 
consolidated to 

less PMs 

VM migration 
over network 

may slow 
down whole 

process 

3 Research gap 

Literature survey reveals that many novel approaches have been used by researchers in 
the field of cloud computing. Prominently, authors have worked upon genetic algorithm, 
stochastic integer programming, honey bee algorithm and bin packing approach for 
allocating VMs to PMs in cloud computing environment. Most of authors, through 
different approaches, have tried to find the mechanism to allocate maximum number of 
VMs to PMs with an objective to reduced power consumption. In most of research work 
carried out in recent years, authors have concentrated upon ‘how to tightly pack PMs 
with VMs’. When a PM is tightly packed with VMs and resource demand of VMs 
residing in that PM increases, it results in hotspot situation. Either the hotspot issue has 
not been discussed in previous works or if it has been discussed, it incurs extra overhead 
due to VM migration especially if done over the network. A situation of coldspot may 
arise when a server runs at low utilisation. How to resolve coldspot issue, is not discussed 
appropriately in previous work. Also the algorithms discussed in previous works for 
mapping of VMs into PMs are compute intensive which consumes large processing time 
and increases power consumption of processor indirectly. Since VM allocation to PM is 
done frequently in clouds, faster algorithm is needed. So, identified research gap and 
further direction of research work can be summarised as follows. 
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• Faster algorithm for VM to PM mapping is needed which takes less CPU cycle, 
leading to less power consumption. 

• Algorithm should avoid hotspot and if it occurs, algorithm should resolve it locally 
without need of migration over network as far as possible. 

• Coldspot condition should be checked periodically and if occurs, workload of 
underutilised PM should be consolidated with other active PMs. 

4 Objectives of paper 

Based upon literature review and identified research gap, following objectives have been 
taken in this paper. 

• To develop faster and general purpose heuristic for VM to PM mapping in cloud 
datacentres. 

• To develop faster heuristics for local hotspot mitigation, avoiding migration over the 
network. 

5 Proposed framework 

The proposed framework describes how consumers interact with cloud system. It shows 
various interfaces through which requests pass through after getting accepted. We have 
upgraded the framework proposed by Beloglazov et al. (2016). In their framework, they 
have taken eight modules in green service allocator part. Out of eight, three are ‘pricing’, 
‘consumer profile’, and ‘accounting’. These modules are closely interlinked. ‘Pricing’ 
module tells how service requests are charged, ‘consumer profile’ module collects special 
features of consumer so that privilege may be given to such consumers and ‘accounting’ 
module monitors the actual usage of resources by VMs and accounts for the resource 
usage costs. We have taken six modules, which are interwoven, so interact frequently 
with each other for sharing information. So, we have taken functionality of above 
mentioned three modules into one module named as ‘profile manager and pricing’. This 
framework has two new modules named as ‘SLA analyser’ and ‘statistical analyser’, for 
keeping SLA information and complete history of all applications respectively. ‘Service 
analyser’ modules continuously interact with ‘SLA analyser’ module to guarantee that 
SLA is not compromised. ‘Threshold analyser’ module is taken exclusively for keeping 
track of usage of various resources. ‘VM manager’ periodically interacts with ‘threshold 
analyser’ module to know current usage values and threshold values for various 
resources. The ‘VM manager’ module comprises of various functions. It is most 
important part of whole framework. It is responsible for overall performance of whole 
framework. It is responsible for allocating VMs to incoming requests and then allocating 
VMs to PMs in energy efficient manner. Algorithms for VMs to PM mapping are part of 
this module. This module continuously interacts with other modules in framework for  
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getting updated information about all VMs. It keeps on interacting with ‘threshold 
analyser’ module to have latest information about resource usage. As soon as a resource 
crosses its threshold usage, VMs need to be migrated. VM migration process is part of 
this module. As Figure 1 shows, users/brokers/enterprises interact with cloud architecture 
for accessing cloud resources. Here complete architecture is divided into three layers 
namely top layer, middle layer and bottom layer. Top layer consists of users/brokers/ 
enterprises. Middle layer consists of following six modules which is core part of cloud 
architecture. Bottom layer consists of PM which host VMs. Various modules are 
discussed below. 

• Service analyser – This module analyses the service requirements of incoming 
applications. Service requirements can be of two types – static and dynamic. Static 
requirements infrequently changes with time while dynamic requirements frequently 
changes with time. So, analysing service requirements of applications is essential for 
efficient working of framework. It also takes information regarding resource 
utilisation and energy consumption from ‘threshold analyser’, current statistics from 
‘statistical analyser’ and availability of VMs from ‘VM manager’ respectively. 

• SLA analyser – Responsibility of this module is to make sure that SLA is not 
violated. It keeps record of SLA details, priorities, privileges of various customers 
and continuously monitors these parameters so that SLA is not violated. When 
workload for a particular application changes and if customer has requested for 
resources scaling, it informs ‘VM manager’ module regarding it. 

• Threshold analyser – It keeps utilisation threshold for all resources. ‘Service 
analyser’ continuously interacts with ‘threshold analyser’ while accepting new 
application. During execution of current requests, it makes sure that utilisation of 
resources does not cross their threshold values. 

• Statistical analyser – It records information regarding current utilisation of all 
resources and past history of applications related to their resource utilisation. 
‘Service analyser’ interacts with ‘statistical analyser’ while serving requests from 
applications. 

• Profile manager and pricing – It decides priority of customer so that special status 
can be given to higher priority customer over the others. It also saves information 
regarding auto scaling requests by customers. It charges the service requests as per 
defined policy. It monitors the actual usage of resources by VMs and maintains 
accounts for the resource usage costs. Billing monitor interacts with ‘statistical 
analyser’ for extracting statistics for billing purposes. It interacts with ‘service 
analyser’ to get information of new requests. 

• VM manager – This module keeps track of available VMs and resource usage of 
existing VMs. As new request comes in, it allocates VMs to new applications in 
consultation with ‘service analyser’ module. It is also responsible for VM migration 
in hotspot mitigation and coldspot mitigation. It interacts with ‘statistical analyser’ 
for coldspot and hotspot mitigation. 
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Figure 1 Proposed framework for cloud computing 
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6 Methodology 

We have formulated problem of VM to PM mapping as a multidimensional bin packing 
problem. Given n items with sizes s1, s2, …, sn such that 0 ≤ si ≤ 1 for 1 ≤ i ≤ n, pack them 
into the fewest number of unit capacity bins. Problem is NP-hard (NP – complete for the 
decision version). There is no known polynomial time algorithm for its solution, and it is 
conjectured that none exists. There is difference between multiple knapsack problem and 
bin packing problem. Knapsack problem pack a subset of the items into a fixed number 
of bins, with varying capacities, so that the total value of the packed items is a maximum. 
Bin packing problem suggest: given as many bins with a common capacity as necessary, 
find the fewest that will hold all the items. In this problem, the items are not assigned 
values, because the objective does not involve value. 

6.1 Vector bin packing 
Generally VM placement problem has been solved by considering only one resource, i.e., 
one dimension while VMs require multiple resources. So, this problem can be simulated 
as VBP problem. In VBP we are given n things having d-dimensions and we are to place 
these things into minimum number of bins which are represented by same number of 
dimensions. Let V1, V2, V3, …, Vn be n number of vectors representing n number of 
things. VBP maps these n vectors to r number of bins B1, B2, B3, …, Br having same 
dimensions as that of vectors where for each bin x and for each dimension y. 
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Here objective is to minimise r. VBP is NP-hard for every d and APX-hard for d >= 2. 
VBP can be applied in cloud computing environment for allocating VMs to PMs. VMs 
are treated as things and bins can be treated as PMs. Each VM has requirement of various 
resources like processor, memory and I/O. Similarly PM has capacity across these 
resources. So while assigning VM to PM in VBP problem, the demand across each 
dimension in VM should not cross remaining capacity across each respective dimension 
in PM. This restriction across each dimension in each individual PM makes this 
assignment less liberal. FF/FFD and its variants are primary heuristics to solve this 
problem. Some weight functions are applied to the demands of VM across each 
dimension to get a scalar value. Applying weights have other advantages also. If 
mentioning resource demand across few particular dimensions is not important (say PM 
has sufficient resources along few dimensions) then problem can be reduced in lesser 
number of dimensions or in single dimension. If allocation is to be favoured towards a 
subset of resources then weights in other dimensions can be kept lower. So weights help 
in moulding the solution as per requirement (Zhang et al., 2019). 

6.2 Uniqueness of work 

The uniqueness of proposed work is that both of the proposed heuristics are uniquely 
efficient in terms of speed and PMs used. Heuristics have been tested upon wide range of 
datasets. Most of the works by researchers in this field have been tested with PlanetLab 
datasets only, but we have tested our heuristics on low workload, medium workload and 
high workload and PlanetLab datasets. The reason is that PlanetLab includes datasets of 
few prominent datacentres only; but cloud computing has penetrated into small and 
medium level enterprises also. So, workloads of organisations vary from low to high. Our 
work has been tested to be more efficient than others work in all test cases. We have 
presented this model for each and every type of workload datacentres. Other uniqueness 
of our work is that while other works have concentrated on either resource optimisation 
or time efficiency of their heuristics; we have taken both of these aspects into 
consideration. Another specialty of our work is that we have considered two resources 
(processor and memory) into consideration while most of previous works have taken 
single resource. 

6.3 Studying existing FFD variants 

Greedy algorithms have come up with promising candidates for solving single dimension 
bin packing problems. One of the heuristics which has been used by researchers is 
FF/FFD with several variants. By assigning some appropriate values (weights) to 
multidimensions, we can generate FFD for multidimensional bin packing problem too. 
Two broad categories of variants used by researchers are first fit decreasing product 
(FFDP) and first fit decreasing sum (FFDS). 

6.3.1 First fit decreasing product 
Here product of dimensions of vector is taken and then sorted in decreasing order. Then 
vectors in decreasing order are assigned to bins. 
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( )Product v j d Vj= <=∏  

6.3.2 First fit decreasing sum 
Here sum of dimensions of vector is taken and then sorted in decreasing order. Then 
vectors are assigned to bins in decreasing order. But in FFDS weights are used to mould 
solution. 

( ) ( )Sum v j d bj Vj= <=  

Values of bj depend upon how we want to modulate dimensions. Value of bj can be taken 
as average demand across dimension j in all VM candidates. 

( )i.e., 1 / 1 to across dimension .rbj n r n Vj j= =  

When value of bj is taken as average across all dimensions, we call it FFD average 
summation (FFDAVG). Son and Buyya (2019) shows FFDS showed the best 
performance. 

6.3.3 First fit decreasing dot product (FFDDP) 
Let at time t, R(t) denote the remaining capacity vector of bin under consideration. Then 
this algorithm places that VM first which has highest value of the weighted dot product 

( ) ( ) .rj bj Vj R t j  

6.3.4 Norm-based greedy approach (NBGA) 

This approach calculates 2( ( ) )rj bj Vj R t j−  and places the VM to PM in the 
increasing order of this value. 

7 Proposed heuristics for VMs allocations in cloud computing 
environment 

Datacentres host PMs, which host VMs to execute incoming workloads. Here we propose 
two heuristics for VMs to PMs mapping. 

7.1 Proposal one – correlation-based first fit decreasing 

One of our proposed heuristics follows correlation-based approach. We name it as 
correlation-based first fit decreasing (CBFFD). We have taken the case of two 
dimensional RR vector (processor and memory). If requirement along two dimensions are 
correlated, i.e., requirements along both dimensions are in same range, we delay that VM 
for placement. VM with least correlation (largest difference of RRs along two 
dimensions) will be taken first for allocation otherwise at later stage such VM will create 
problem due to mismatch in remaining vector and RR vector. Propose heuristics first 
takes difference between RRs of VM along both dimensions. Then our algorithm sorts 
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VM in the decreasing order of difference between RRs of VM along both dimensions. 
Let at time t, D[r] = absolute value of (VR1 – VR2) for all VMs and R1 and R2 are RRs 
of VMs along two dimensions, i.e., along two resources (processor and memory). r varies 
from 1 to maximum number of VMs. Outline of algorithm is given below. 

1 Input: List of VMs and PMs 

2 Output: Mapping from VM list to PM list 

3 Calculate difference between RRs along both dimensions 

4 Sort VMs in the decreasing order of the difference 

5 Repeat step 6 for each VM in sorted VMList 

6 Repeat step 7 for each PM in PMList 

7 If (VM requirements along each dimension is less than remaining capacity along 
respective dimension in PM) then 
a allocate VM to PM 
b update remaining vector in PM 
c take next VM (next iteration in step 5) 

8 Exit. 

7.2 Proposal two – first fit increasing product 

Our second proposed heuristic is first fit increasing product (FFIP).We calculate product 
of RR along both dimensions for each VM. Then VMs are sorted in increasing order of 
this product value and allocation to VMs to PMs is done in increasing order of this 
product value. FFIP has performed outstandingly for low RR. Outline of algorithm is 
given below. 

1 Input: List of VMs and PMs 

2 Output: Mapping from VM list to PM list 

3 Calculate product of the RRs along both dimensions D[r] = VR1 * VR2 

4 Sort VMs in the increasing order of the product 

5 Repeat step 6 for each VM in sorted VMList 

6 Repeat step 7 for each PM in PMList 

7 If (VM requirements along each dimension is less than remaining capacity along 
respective dimension in PM) then 
a allocate VM to PM 
b update remaining vector in PM 
c take next VM (next iteration in step 5) 

8 Exit. 
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8 Energy efficient hotspot mitigation 

In cloud datacentres, RR of VMs may increase over time. When RR increases, increased 
demand is first satisfied by the PM holding that VM. But when PM is unable to satisfy 
the increased demand of VM, it is called hotspot. Then hotspot mitigation is done by 
moving VM to some other PM which has sufficient available capacity of resources. The 
judicious choice of choosing destination PM has major role in decreasing the energy 
consumption and overall enhancement in performance. In the present work, we have 
proposed two algorithms. Our algorithms are variants of MOM algorithm proposed by 
Beloglazov et al. (2016). 

8.1 Proposed first mitigation algorithm (Miti) 

In our first hotspot mitigation algorithm, we pick PM which is observing hotspot. Then 
algorithm replaces the VMs in that PM until it reaches to state where no further VM can 
be placed. To place remaining VMs instead of switching on new PM, search starts from 
first PM once again to check if any of PM can accommodate the remaining VMs of 
overloaded PM. This strategy is followed because it is also possible that some PMs may 
be having necessary resources to accommodate few of VMs of overloaded PM. If none of 
already running PM can satisfies the RRs of VMs in question then only new PM is 
switched on. The first proposed algorithm for hotspot mitigation is presented ahead. 

Algorithm Miti 
1 Input: PM with hotspot 
2 Output: Reallocation of those VMs 
3 Repeat steps 4–7 for j = 1 to n // for total number of PMs 
4 If PM[j] is having hotspot, then 
 1 Extract VMs residing in PM in VMList // suppose total s 
5 Repeat step 6 for each VM[i] in VMList (i varies from 1 to m, where m is total no. of VMs) 
6 If current PM can meet the resource requirements of current VM in consideration then 
 1 Place it in current PM 
 2 Keep its entry in allocation table allocation[i][j] = 1 // allocation[i][j] stores VM to 

PM mapping 
 3 Set VM[i].vmplaced = True 
 Else 
  1 Repeat for k = 1 to n // search all PMs 
  If PM[k] can meet resource requirements of any leftover VMs then 
   a Place VM in current PM 
   b Make entry in allocation table allocation[i][k] = 1 
7 Repeat step 8 for k = 1 to s 
8 If VM[i].vmplaced <> True, then 
 1 Switch on new PM 
 2 Allocate current VM to new PM 
 3 Make entry in allocation table 
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 4 VM[i]. vmplaced = True 
9 Exit 

8.2 Proposed second mitigation algorithm (Miti1) 

In second algorithm, we take difference of RRs along both dimensions of those VMs. Let 
it is denoted by d. Then we sort those VMs in decreasing order of this value. Larger the 
difference of RRs along both dimensions, lesser is the correlation between them. It means 
we will reallocate VMs with high value of d first. Then we map these VMs in decreasing 
order of value d on PM which was having hotspot. We allocate as many VM so that PM 
is not overloaded. For those VMs which could not be placed, we start searching PM from 
first one to find if any PM has sufficient leftover resources along respective dimensions 
to satisfy RR of remaining VMs. If such PMs exist then VMs are placed in those PM 
otherwise new PM is switched on to accommodate leftover VMs. We have taken memory 
RR in MB/GB and CPU requirement in percentage of total CPU share available. The 
outline of algorithm is presented below. 

Algorithm Miti1 
1 Input: PM with hotspot 
2 Output: Reallocation of those VMs 
3 Repeat steps 4–7 for j = 1 to n // n for total number of PMs 
4 If PM[j] is having hotspot, then 
 1 Extract VMs residing in PM // suppose total no. of VMs in current PM is r 
 2 Calculate correlation along two 

resource dimensions 
// (correlation is difference of resource 
requirement along two dimensions // i.e.,  
d = VM[i].CPU – VM[i].MEM) 

 3 Arrange those VMs in decreasing order of d in VMlist. 
5 Repeat for each VM[i] in VMList // suppose total no. of VMs in system is m 
 1 Place it in current PM 
 2 Keep its entry in allocation table allocation[i][j] = 1 
 Else 
 1 Repeat for k = 1 to n // search all PMs 
  If PM[k] can meet resource requirements of any leftover VMs then 
   a Place VM in current PM 
   b Make entry in allocation table allocation[i][k] = 1 
6 Repeat step 7 for k = 1 to r 
7 If VM[i]. vmplaced <> True, then 
 1 Switch on new PM 
 2 Allocate current VM to new PM 
 3 Make entry in allocation table 
 4 VM[i]. vmplaced = True 
8 Exit 
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9 Empirical evaluation 

9.1 Proposed heuristics for VMs allocations in cloud computing environment 

We have written an ad hoc simulator (VMSimul) to analyse different variants of FF/FFD 
and our proposed heuristics. VMSimul has been designed to simulate cloud computing 
environment. Requests for resources by VMs have been generated randomly in VMSimul. 
We have taken wide spectrum of requests for resources which match cloud environment. 
We have examined variety of cases. First we have divided our simulation process for four 
categories of resource demand. 

1 Low resource demand (up to 15% of total available resource). 

2 Arbitrary (from least to maximum). 

3 Within realistic range for cloud environment (between 15% and 60% of total 
available resource along both dimensions). 

4 PlanetLab data. 

In first three cases we have taken two subcases – first of incoming request of 500 VMs 
and second of 1,000 VMs. Resource demand by VMs have been generated randomly as 
per requirement of first three cases. So we have six cases (3 * 2) in all. For each case, 
simulation has been run for five times and then average of data has been taken. For each 
case two Bar charts have been drawn: one for number of comparisons done in VM to PM 
mapping and second for number of PMs used. RR are taken in percentage of total 
available resource. 

Case 1 No. of VMs = 500, 0 < RR <= 15% 
Table 2 shows that for Case 1, FFDDP, FFDAVG, FFDP, FFDSUM, FFIP need 23 PMs 
followed by CBFFD which require 22 PMs, followed by NBGA which needs 27 PMs. 
Average number of comparisons for VMs to PMs mapping are 4885 for FFIP, 5513 for 
CBFFD, which are much less as compared to NBGA, FFDDP, FFDAVG, FFDP, 
FFDSUM, which require on average 7,100 comparisons. 
Table 2 Simulation results for Case 1 (n = 500, 0 < RR <= 15%) 
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NBGA 27 7,108  27 7,205  27 6,955  26 6,837  26 6,848  27 6,991 
FFDDP 23 7,288  24 7,275  23 7,057  23 6,988  23 6,975  23 7,117 
FFDAVG 23 7,288  24 7,275  23 7,057  23 6,988  23 6,975  23 7,117 
FFDP 23 7,230  24 7,233  23 6,997  23 6,941  23 6,904  23 7,061 
FFDSUM 23 7,262  24 7,270  23 7,058  23 6,990  23 6,977  23 7,111 
FFIP 24 4,989  24 5,023  23 4,924  23 4,638  23 4,853  23 4,885 
CBFFD 22 5,487  23 5,480  22 5,625  23 5,497  22 5,479  22 5,513 
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For low RR, our proposed heuristics have given much better performance with FFIP 
taking least number of comparisons. Comparing statistically, Figure 2 and Table 2 show 
that FFIP is about 32% and CBFFD is about 23% faster as compared to their 
counterparts. FFDDP and FFDAVG are much slower and giving same level of 
performance. Among all heuristics (other than ours), NBGA is little bit better in terms of 
number of comparisons performed. Figure 3 and Table 2 depict that NBGA has used 
about 15% more PMs as compared to best counterparts. CBFFD has used about 18% less 
PMs as compared to NBGA. FFIP is at par with others while CBFFD is best. FFDDP, 
FFDAVG, FFDP and FFDSUM have used same number of PMs. 

Figure 2 No. of comparisons for Case 1 (n = 500, 0 < RR <= 15%) (see online version  
for colours) 

 

Figure 3 No. of PMs used for Case 1 (n = 500, 0 < RR <= 15%) (see online version for colours) 

 

Case 2 No. of VMs = 1,000, 0 < RR <= 15% 
Table 3 shows that for Case 2, FFIP and CBFFD have taken 47 and 45 PMs respectively. 
FFDSUM need 47 while FFDDP, FFDAVG, FFDP need 46 PMs followed by NBGA 
which needs 52 PMs. Talking about efficiency, FFIP and CBFFD are most efficient ones 
in terms of number of comparisons followed by remaining all with an average number 
comparisons of about 27,955 for VMs to PMs mapping. FFIP has performed 18,809 and 
CBFFD has performed 21,491 comparisons. 
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Table 3 Simulation results for Case 2 (n = 1,000, 0 < RR <= 15%) 

 

Tr
ia

l I
 

 
Tr

ia
l I

I 
 

Tr
ia

l I
II 

 
Tr

ia
l I

V 
 

Tr
ia

l V
 

 
Av

er
ag

e 

H
eu

ris
tic

s 

No. of PMs  
used 

No. of 
comparisons 

 

No. of PMs  
used 

No. of 
comparisons 

 

No. of PMs  
used 

No. of 
comparisons 

 

No. of PMs  
used 

No. of 
comparisons 

 

No. of PMs  
used 

No. of 
comparisons 

 

Average no. of 
PMs used 

Average no. of 
comparisons 

N
BG

A
 

52
 

27
,4

66
 

 
53

 
27

,3
31

 
 

52
 

27
,0

34
 

 
52

 
27

,5
96

 
 

53
 

27
,5

35
 

 
52

 
27

,3
92

 
FF

D
D

P 
46

 
28

,3
63

 
 

47
 

28
,2

94
 

 
45

 
27

,8
05

 
 

46
 

28
,3

23
 

 
45

 
27

,9
13

 
 

46
 

28
,1

39
 

FF
D

A
V

G
 

46
 

28
,3

63
 

 
47

 
28

,2
94

 
 

45
 

27
,8

05
 

 
46

 
28

,3
23

 
 

45
 

27
,9

13
 

 
46

 
28

,1
39

 
FF

D
P 

46
 

28
,1

75
 

 
47

 
28

,0
97

 
 

45
 

27
,5

75
 

 
45

 
28

,2
16

 
 

45
 

27
,7

57
 

 
46

 
27

,9
64

 
FF

D
SU

M
 

47
 

28
,3

55
 

 
48

 
28

,2
84

 
 

46
 

27
,7

77
 

 
47

 
28

,3
44

 
 

46
 

27
,9

48
 

 
47

 
28

,1
41

 
FF

IP
 

47
 

19
,1

68
 

 
48

 
19

,0
86

 
 

47
 

18
,5

13
 

 
48

 
18

,7
88

 
 

47
 

18
,4

92
 

 
47

 
18

,8
09

 
C

BF
FD

 
45

 
21

,6
22

 
 

46
 

21
,5

50
 

 
46

 
21

,5
54

 
 

45
 

21
,3

04
 

 
45

 
21

,4
24

 
 

45
 

21
,4

91
 



   

 

   

   
 

   

   

 

   

    Correlation-based heuristics and evaluation of existing greedy heuristics 295    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 4 and Table 3 illustrate that FFIP is 33% and CBFFD is 24% faster as compared to 
its counterparts. FFDDP and FFDAVG have performed same number of comparisons. 
Among all heuristics (other than ours) NBGA has performed comparatively lesser 
number of comparisons. Figure 5 and Table 3 show that CBFFD has taken about 5% less 
PMs as compared to their best counterparts and about 12% lesser than NBGA, while 
FFDDP, FFDAVG and FFDP have used same number of PMs, i.e., 46. FFIP is almost at 
par with others. NBGA has taken maximum number of PMs, about 12% more than the 
best. 

Figure 4 No. of comparisons for Case 2 (n = 1,000, 0 < RR <= 15%) (see online version  
for colours) 

 

Figure 5 No. of PMs used for Case 2 (n = 1,000, 0 < RR <= 15%) (see online version  
for colours) 

 

Case 3 No. of VMs = 500, arbitrary RR 
Arbitrary RRs have been generated between 0 and 100% of available resources using 
random function. Table 4 shows that for Case 3, CBFFD has used 252 PMs followed by 
FFDDP, FFDAVG, FFDP, FFDSUM, which have used around 260 PMs followed by 
NBGA which has used 302 PMs which is followed by FFIP which has used 314 PMs. 
Talking of average number of comparisons, CBFFD has performed fastest with 60,983 
comparisons followed by FFIP with 65,194 which is followed by FFDDP, FFDAVG, 
FFDP, FFDSUM with about 65,200 comparisons, which has been followed by NBGA 
with 69,075 comparisons. 
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Table 4 Simulation results for Case 3 (n = 500, arbitrary RR) (see online version for colours) 
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Figure 6 and Table 4 show that CBFFD has performed 12% faster than NBGA and 8% 
faster as compared to remaining heuristics. FFIP has performed 6% faster as compared to 
NBGA and at par with remaining heuristics. FFDDP and FFDAVG have shown exactly 
same performance while FFDP and FFDSUM are almost near to them. Our CBFFD 
heuristics is best in this case. Figure 7 and Table 4 show that CBFFD has taken about 3% 
lesser number of PMs as compared to its best counterparts and 16% lesser number of 
PMs as compared to NBGA. FFDDP, FFDSUM and FFDAVG have taken same number 
of PMs. 

Figure 6 No. of comparisons for Case 3 (n = 500, arbitrary RR) (see online version for colours) 

 

Figure 7 No. of PMs used for Case 3 (n = 500, arbitrary RR) (see online version for colours) 

 

Case 4 No. of VMs = 1,000, arbitrary RR 
Table 5 shows that CBFFD, taking 497 PMs, has performed more efficiently as compared 
to all other counterparts. Talking of speed of heuristic, CBFFD is on top with 243,234 
comparisons as compared to average comparisons of about 257,000 of other heuristics. 

Figure 8 and Table 5 show that CBFFD has performed 13% faster as compared to 
NBGA and 6% faster as compared to others in terms of number of comparisons. FFIP has 
performed about 1% slower as compared to its counterparts. FFDDP and FFDAVG have 
done same number of comparisons while FFDP and FFDSUM are approaching them. 
Figure 9 and Table 5 show that CBFFD has taken about 2.5% lesser number of PMs to 
allocate incoming VMs as compared to its best counterparts and about 16% lesser 
number of PMs as compared to NBGA. FFDDP and FFDAVG have used same number 
of PMs, while FFDP and FFDSUM are approaching them in terms of number of PMs 
used. 
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Table 5 Simulation results for Case 4 (n = 1,000, arbitrary RR) 
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Figure 8 No. of comparisons for Case 4 (n = 1,000, arbitrary RR) (see online version for colours) 

 

Figure 9 No. of PMs used for Case 4 (n = 1,000, arbitrary RR) (see online version for colours) 

 

Case 5 No. of VMs = 500, 15% <= RR <= 60% 
Table 6 shows that CBFFD has performed more efficiently than NBGA with CBFFD 
occupying 186 PMs while NBGA taking 218 PMs. It is also more efficient than others 
which are taking on average 191 PMs. In terms of number of comparisons FFIP and 
CBFFD have performed much faster as compared to their counterparts. FFIP has done 
46,018 comparisons; CBFFD has performed 47,297 comparisons while on average the 
heuristics except NBGA have performed about 53,300 comparisons. NBGA has not 
performed well in this case, performing 57,200 iterations. 

Figure 10 and Table 6 show that CBFFD has performed about 18% lesser number of 
comparisons as compared to NBGA and 12% lesser as compared to other counterparts. 
FFIP has performed about 20% lesser number of comparisons as compared to NBGA and 
14% lesser as compared to its counterparts. FFDDP and FFDAVG have done same 
number of comparisons while FFDSUM is approaching them. FFDP has performed few 
more comparisons (about 0.5%) as compared to FFDP and FFDAVG. Figure 11 and 
Table 6 show that CBFFD has used about 16% lesser number of PMs than NBGA to 
allocate VMs and about 3% lesser number of PMs as compared to others. FFIP is at par 
with NBGA. FFDDP, FFDAVG, FDDP and FFDSUM have used same number of PMs 
to allocate VMs. 
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Table 6 Simulation results for Case 5 (n = 500, 15% <= RR <= 60%) 
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Figure 10 No. of comparisons for Case 5 (n = 500, 15% <= RR <= 60%) (see online version  
for colours) 

 

Figure 11 No. of PMs used for Case 5 (n = 500, 15% <= RR <= 60%) (see online version  
for colours) 

 

Case 6 No. of VMs = 1,000, 15% <= RR <= 60% 
Data in Table 7 shows that CBFFD has performed more efficiently than NBGA, with 
CBFFD taking 377 PMs and NBGA taking 429 PMs. Other heuristics on average have 
taken 379 PMs. Talking of number of comparisons, our both heuristics have performed 
much faster as compared to other heuristics with FFIP performing 180,829 comparisons 
and CBFFD performing 186,834 comparisons. Other heuristics, on average, have 
performed about 212,600 comparisons. 

Figure 12 and Table 7 show that CBFFD has performed 18% lesser number of 
comparisons as compared to NBGA and 13% lesser number of comparisons as compared 
to its other counterparts. FFIP has performed 21% faster as compared to NBGA and 15% 
faster as compared to others. FFDDP and FFDAVG have done same number of 
comparisons while FFDP and FFDSUM are approaching them. Figure 13 and Table 7 
show that CBFFD has taken about 12% lesser PMs as compared to NBGA and about 1% 
lesser number of PMs as compared to other counterparts. FFIP is at par with NBGA. 
FFDDP and FFDAVG have used same number of PMs, while FFDP and FFDSUM are 
approaching them in terms of number of PMs used. 
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Table 7 Simulation results for Case 6 (n = 1,000, 15% < = RR <= 60%) 
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Figure 12 No. of comparisons for Case 6 (n = 1,000, 15% <= RR <= 60%) (see online version  
for colours) 

 

Figure 13 No. of PMs used for Case 6 (n = 1,000, 15% <= RR <= 60%) (see online version  
for colours) 

 

Case 7 Simulation of various heuristics with workload traces from PlanetLab 
Data in Table 8 shows that our both heuristics are much faster as compared to other 
heuristics with FFIP performing 38,648 comparisons and CBFFD performing 40,643 
comparisons. Other heuristics, on average, have performed about 41,077 comparisons. 
Talking of number of PMs used, CBFFD is close to its counterparts. 

Figure 14 and Table 8 show that CBFFD has performed about 3% lesser number of 
comparisons as compared to NBGA and about 2% lesser number of comparisons as 
compared to its other counterparts. FFIP has performed 7.22% faster as compared to 
NBGA and 6% faster as compared to others. FFDDP and FFDAVG have done same 
number of comparisons while FFDP and FFDSUM are approaching them. Figure 15 and 
Table 8 show that CBFFD has used same number of PMs as that of NBGA and is at par 
with others. FFIP has taken about 8% more PMs as compared to its counterparts. 
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Table 8 Simulation results for workload traces from PlanetLab 
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Figure 14 Number of comparisons for PlanetLab workload traces (see online version for colours) 

 

Figure 15 Number of PMs used for PlanetLab workload traces (see online version for colours) 

 

9.2 Hotspot mitigation 

We have run our algorithms in various scenarios. We have taken six cases with various 
ranges of demand and increase in demands. Though in MOM algorithm, single resource 
is taken but we have taken two resources in our algorithms. We have written an ad hoc 
simulator (HotSimul) in C language to analyse our algorithms and compared the results 
with MOM algorithm given by Beloglazov et al. (2016). Hotsimul has been designed to 
simulate cloud computing environment. Request for resources by VMs has been 
generated randomly in HotSimul. We have taken wide spectrum of requests for resources 
which match cloud environment. We have compared our algorithms with MOM and also 
compared our algorithm with variant of MOM (when taken two resources) (MOM1) 
(Beloglazov et al., 2016). In our simulator, we have assumed that eighty PMs are 
available which can be increased as needed. 
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Case 1.1 Demand of resources (max 20% of total available resources) and 
increase in demand (max 20% of demand) 

As Table 9 shows, in this case our both algorithms are performing better than their 
counterparts. In this case as Figure 16 and Table 9 show that before occurrence of hotspot 
average number of PMs used is 12%. After hotspot mitigation our first algorithm (Miti) 
has used average of 13% and second algorithm (Miti1) has used average of 13% while 
MOM and MOM1 have used 13% and 22% respectively. 
Table 9 Comparison of our hotspot mitigation algorithms and others for Case 1.1 

S. no. Comparisons PM used Miti MOM MOM1 Miti1 
1 365 9 10 10 16 9 
2 332 8 9 9 16 9 
3 337 8 10 10 16 10 
4 356 9 10 10 18 10 
5 364 9 10 10 17 10 
6 312 7 8 8 14 8 
7 351 8 9 9 16 9 
8 333 8 9 9 16 9 
9 345 9 11 11 18 10 
10 322 8 9 10 16 9 
11 360 9 10 10 16 9 
12 341 8 11 11 18 10 
13 368 9 10 10 16 10 
14 334 8 9 9 16 9 
15 362 9 10 10 18 10 
16 377 9 10 10 17 10 

Average 8.43 = 12% 9.1 = 13% 9.75 = 13% 16.5 = 22% 9.43 = 13% 

Figure 16 Number of PMs used after hotspot mitigation for Case 1.1 (see online version  
for colours) 
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Case 1.2 Demand of resources (max 20% of total available resources) and 
increase in demand (max 50% of demand) 

Figure 17 and Table 10 show that before occurrence of hotspot average number of PMs 
used is 27%. After hotspot mitigation our first algorithm (Miti) has used 35% of PMs and 
second algorithm (Miti1) has used 34% of PMs, while MOM and MOM1 have used 37% 
and 58% of PMs respectively. Miti algorithm has taken 2% less PMs than MOM and 
23% less PMs than MOM1. Miti1 algorithm has taken 3% less PMs than MOM and 24% 
less PMs than MOM1. 
Table 10 Comparison of our hotspot mitigation algorithms and others for Case 1.2 

S. no. Comparisons PM used Miti MOM MOM1 Miti1 
1 882 19 25 26 41 23 
2 768 18 23 24 39 22 
3 819 19 25 26 41 24 
4 884 21 29 30 48 27 
5 857 21 29 30 47 28 
6 848 20 27 28 46 26 
7 953 21 27 29 46 28 
8 773 18 24 24 40 22 
9 981 22 30 32 51 29 
10 843 20 25 26 44 25 
11 943 22 30 32 50 30 
12 931 21 28 29 46 26 
13 985 23 32 33 51 31 
14 912 21 30 31 47 29 
15 883 19 25 26 43 23 
16 829 19 26 27 43 25 
Average 20.25 = 27% 27.18 = 35% 28.31 = 37% 45.18 = 58% 26.12 = 34% 

Figure 17 Number of PMs used after hotspot mitigation for Case 1.2 (see online version  
for colours) 
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Case 1.3 Demand of resources (max 20% of total available resources) and 
increase in demand (max 80% of demand) 

In this case as Figure 18 and Table 11 show that before occurrence of hotspot average 
number of PMs used is 27%. After hotspot mitigation our first algorithm has used 39% 
and second algorithm has used 37% of PMs while MOM and MOM1 have used 40% and 
62% of PMs respectively. Our first algorithm (Miti) has taken 1% less PMs than MOM 
and 23% less PMs than MOM1. Our second algorithm (Miti1) has taken 3% less PMs 
than MOM and 25% less PMs than MOM1. 
Table 11 Comparison of our hotspot mitigation algorithms and others for Case 1.3 

S. no. Comparisons PM used Miti MOM MOM1 Miti1 
1 821 20 30 29 47 26 
2 871 20 29 30 47 26 
3 942 22 32 32 50 30 
4 861 19 29 30 47 27 
5 907 20 30 31 47 27 
6 837 20 30 31 48 28 
7 923 21 30 30 49 28 
8 896 21 32 32 49 29 
9 922 21 31 32 50 28 
10 896 23 36 36 55 33 
11 929 21 34 33 52 29 
12 861 21 32 33 51 30 
13 921 21 30 32 49 29 
14 860 21 32 33 51 31 
15 700 16 23 24 37 23 
16 815 19 31 32 47 28 
Average 20.37 = 27% 30.68 = 39% 31.25 = 40% 48.5 = 62% 28.25 = 37% 

Figure 18 Number of PMs used after hotspot mitigation for Case 1.3 (see online version  
for colours) 
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Case 2.1 Demand of resources (max 50% of total available resources) and 
increase in demand (max 20% of demand) 

In this case as Figure 19 and Table 12 illustrate that before occurrence of hotspot, average 
number of PMs used is 28%. After hotspot mitigation our first algorithm has used 35% 
and second algorithm has used 33% of PMs, while MOM and MOM1 have used 33% and 
55% of PMs respectively. Our first algorithm has taken 2% more PMs than MOM and 
20% less PMs than MOM1. Our second algorithm has taken same number of PMs as 
MOM but 22% less PMs than MOM1. 
Table 12 Comparison of our hotspot mitigation algorithms and others for Case 2.1 

S. no. Comparisons PM used Miti MOM MOM1 Miti1 
1 777 21 25 26 42 25 
2 863 23 28 28 44 27 
3 850 23 32 31 46 27 
4 792 22 24 25 41 25 
5 846 23 28 29 44 27 
6 770 20 25 27 41 25 
7 908 24 31 32 47 30 
8 815 22 26 27 41 25 
9 799 22 28 27 41 25 
10 812 22 29 27 43 26 
11 929 23 27 27 46 25 
12 841 22 27 28 46 26 
13 784 20 27 26 41 23 
14 809 20 30 27 42 25 
15 906 23 28 28 48 26 
16 710 19 24 26 39 23 
Average 21.81 = 28% 27.43 = 35% 25.87 = 33% 43.25 = 55% 25.6 = 33% 

Figure 19 Number of PMs used after hotspot mitigation for Case 2.1 (see online version  
for colours) 
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Case 2.2 Demand of resources (max 50% of total available resources) and 
increase in demand (max 50% of demand) 

In this case as Figure 20 and Table 13 show that before occurrence of hotspot, average 
number of PMs used is 29%. After hotspot mitigation our first algorithm (Miti) has used 
40% and second algorithm (Miti1) has used of 38% of PMs while MOM and MOM1 
have used 42% and 63% of PMs respectively. In this case our first algorithm (Miti) has 
taken 2% less PMs than MOM and 23% less PMs than MOM1. Our second algorithm 
(Miti1) has used 4% less PMs than MOM and 25% less PMs than MOM1. 
Table 13 Comparison of our hotspot mitigation algorithms and others for Case 2.2 

S. no. Comparisons PM used Miti MOM MOM1 Miti1 
1 841 22 31 32 48 31 
2 815 22 33 34 51 32 
3 856 22 32 32 50 29 
4 917 24 33 36 55 34 
5 795 21 34 32 48 29 
6 833 21 30 32 46 28 
7 877 23 31 32 50 32 
8 913 24 35 33 53 29 
9 785 20 29 30 45 26 
10 877 23 31 31 50 32 
11 820 23 32 33 51 29 
12 934 24 35 35 54 31 
13 814 21 28 29 46 28 
14 777 21 33 33 48 29 
15 779 20 26 27 44 26 
16 860 24 36 38 56 35 
Average 22.18 = 29% 31.81 = 40% 32.43 = 42% 49.68 = 63% 30 = 38% 

Figure 20 Number of PMs used after hotspot mitigation for Case 2.2 (see online version  
for colours) 

 



   

 

   

   
 

   

   

 

   

    Correlation-based heuristics and evaluation of existing greedy heuristics 311    
 

    
 
 

   

   
 

   

   

 

   

       
 

Case 2.3 Demand of resources (max 50% of total available resources) and 
increase in demand (max 80% of demand) 

Figure 21 and Table 14 show that before occurrence of hotspot, average number of PMs 
used is 29%. After hotspot mitigation our first algorithm (Miti) has taken 49% and 
second algorithm (Miti1) has taken 44% of PMs, while MOM gives 49%, MOM1 gives 
73%. In this case our first algorithm (Miti) has taken same number of PMs as MOM but 
24% less PMs than MOM1. Second algorithm (Miti1) has taken 5% less PMs than MOM 
and 29% less PMs than MOM1. 
Table 14 Comparison of our hotspot mitigation algorithms and others for Case 2.3 

S. no. Comparisons PM used Miti MOM MOM1 Miti1 
1 809 22 38 38 57 36 
2 875 23 42 40 60 35 
3 869 22 38 36 56 33 
4 836 21 35 36 55 34 
5 732 20 36 36 51 31 
6 817 22 37 38 57 35 
7 821 22 39 38 58 35 
8 886 23 35 36 57 34 
9 855 22 40 40 56 33 
10 858 22 40 38 58 33 
11 945 24 40 41 62 38 
12 896 23 39 40 59 38 
13 873 24 43 42 62 38 
14 844 23 40 41 59 37 
15 920 24 41 41 61 36 
16 770 21 37 37 54 34 
Average 22.37 = 29% 38.75 = 49% 38.62 = 49% 57.6 = 73% 35 = 44% 

Figure 21 Number of PMs used after hotspot mitigation for Case 2.3 (see online version  
for colours) 
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Case 3.1 Demand of resources (max 60% of total available resources) and 
increase in demand (max 20% of demand) 

Figure 22 and Table 15 show that before occurrence of hotspot average number of PMs 
used is 34%. After hotspot mitigation our first algorithm (Miti) has taken 42% and 
second algorithm (Miti1) has taken 40% of PMs, while MOM and MOM1 have used 
44% and 64% of PMs respectively. In this case our first algorithm (Miti) has taken 2% 
less PMs than MOM and 22% less PMs than MOM1. Our second algorithm (Miti1) has 
taken 4% less PMs than MOM and 24% less PMs than MOM1. 
Table 15 Comparison of our hotspot mitigation algorithms and others for Case 3.1 

S. no. Comparisons PM used Miti MOM MOM1 Miti1 
1 1,029 26 32 34 53 32 
2 1,029 29 33 35 49 33 
3 1,018 26 32 32 51 30 
4 1,037 27 33 35 54 33 
5 998 28 33 36 56 33 
6 962 25 33 33 46 30 
7 978 27 32 33 51 30 
8 1,040 27 33 35 52 32 
9 944 25 29 31 45 29 
10 944 25 31 32 49 28 
11 1,055 28 33 35 54 32 
12 1,042 30 35 37 54 35 
13 1,000 28 36 35 53 34 
14 941 27 31 34 51 30 
15 937 26 36 34 48 31 
16 1,101 28 34 35 53 33 
Average 27 = 34% 32.87 = 42% 34.12 = 44% 51.18 = 64% 31.56 = 40% 

Figure 22 Number of PMs used after hotspot mitigation for Case 3.1 (see online version  
for colours) 

 



   

 

   

   
 

   

   

 

   

    Correlation-based heuristics and evaluation of existing greedy heuristics 313    
 

    
 
 

   

   
 

   

   

 

   

       
 

Case 3.2 Demand of resources (max 60% of total available resources) and 
increase in demand (max 50% of demand) 

In this case as Figure 23 and Table 16 show that before occurrence of hotspot average 
number of PMs used is 34%. After hotspot mitigation our first algorithm (Miti) has used 
53% and second algorithm (Miti1) has used 48% of PMs, while MOM and MOM1 have 
used 54% and 79% of PMs respectively. Our first algorithm (Miti) has used 1% less PMs 
than MOM and 26% less PMs than MOM1. Our second algorithm (Miti1) has used 6% 
less PMs than MOM and 31% less PMs than MOM1. 
Table 16 Comparison of our hotspot mitigation algorithms and others for Case 3.2 

S. no. Comparisons PM used Miti MOM MOM1 Miti1 
1 998 25 36 38 57 35 
2 997 26 40 42 62 36 
3 1006 27 43 43 66 38 
4 963 26 46 41 61 37 
5 1040 29 46 47 69 43 
6 1073 28 40 43 62 39 
7 923 26 40 42 61 38 
8 1035 27 40 41 62 37 
9 1043 27 40 44 63 39 
10 1045 30 53 48 68 44 
11 1089 29 50 49 68 41 
12 906 25 37 38 58 33 
13 983 24 33 35 53 31 
14 1059 28 50 44 67 39 
15 1100 29 42 43 67 42 
16 1039 25 36 37 58 33 
Average 26.92 = 34% 42 = 53% 42.18 = 54% 62.62 = 79% 37.81 = 48% 

Figure 23 Number of PMs used after hotspot mitigation for Case 3.2 (see online version  
for colours) 
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Table 17 Comparison of our hotspot mitigation algorithms and others for Case 3.3 
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Case 3.3 Demand of resources (max 60% of total available resources) and 
increase in demand (max 80% of demand) 

In this case as Figure 24 and Table 17 show that after occurrence of hotspot, average 
number of PMs used is 35%. After hotspot mitigation our first algorithm has used 63% 
PMs and 97.5% of VMs have been packed in available PMs and second algorithm has 
used 52% PMs and 98.75% of VMs have been packed in available PMs while MOM1 has 
used 59% PMs and 97.5% of VMs have been packed in available PMs, MOM2 has used 
81% PMs and 97.5% of VMs have been packed in available PMs. Our first algorithm 
(Miti) has taken 4% more PMs than MOM and 18% less PMs than MOM1. Our second 
algorithm (Miti1) has taken 7% less PMs than MOM and 29% less PMs than MOM1. 
Talking about number of VMs placed after migration, Figure 25 and Table 17 show that 
our second algorithm (Miti1) has placed 1% more VMs. Our both algorithm have 
performed better than MOM and MOM1. Our second algorithm is better than remaining 
all algorithms in all cases. Our first algorithm is better than MOM and MOM1 in all cases 
except Cases 2.1 and 3.3. 

Figure 24 Number of PMs used after hotspot mitigation for Case 3.3 (see online version  
for colours) 

 

Figure 25 Number of VMs placed after hotspot mitigation for Case 3.3 (see online version  
for colours) 

 

9.3 SLA violation 

Here we discuss the SLA violation caused by these algorithms in simulation. Results 
obtained after simulation are presented in percentage in Table 18 and displayed in  
Figure 26. Table 18 and Figure 26 show that Miti algorithm has caused 1.37% of SLA 
violation which is least among all algorithms. Miti1 has caused 4.50% less SLA violation 
than MOM but 10.84% more than MOM1. 
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Table 18 SLA violation in different algorithms 

S. no. Miti (%) MOM (%) MOM1 (%) Miti1(%) 
1 1.25 28.50 13.50 24.255 
2 1.50 29.75 12.75 26.50 
3 1.25 28.50 14.75 22.25 
4 1.25 29.50 12.50 19.75 
5 1.50 27.75 14.50 23.50 
6 1.60 26.50 12.50 25.50 
7 1.25 28.75 13.75 26.25 
8 1.25 29.75 12.75 25.25 
9 1.50 29.50 13.50 24.75 
 Average = 1.37% Average = 28.72% Average = 13.38% Average = 24.22% 

Figure 26 SLA violation in different algorithms (see online version for colours) 

 

Our hotspot mitigation algorithms (Miti and Miti1) try to use minimum number of PMs 
after mitigation to make mitigation process energy efficient. During hotspot mitigation 
our algorithms try to minimise number of PMs used after hotspot mitigation. Both 
algorithms have shown promising results in direction of energy efficiency and also in 
establishing acceptability of cloud computing paradigm. 

10 Summary 

As clouds have strong business perspective also, our heuristics has been tested as a prime 
alternate options for VMs to PMs mapping Heuristics in proposed work reduces the 
number of PMs used, thus increase ROI for service provider. Our FFIP heuristic 
performed remarkably well when RR is low. It is about 32% faster as compared to others 
and at par with others in terms of PMs used. Our second heuristics, CBFFD remained 
best throughout simulation. It is 24% faster for low RR and 10% faster for average and 
arbitrary RRs while taking 2–3% lesser number of PMs as compared to its best 
counterparts. CBFFD is about 15% more efficient as compared to NBGA in term of 
number of PMs used. Among other heuristics, FFDDP and FFDAVG performed about 
0.5–1% lesser comparisons but used 0.5–1% more number of PMs as compared to others. 
For average load these are 14–15% faster but use more number of PMs. CBFFD and 
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FFIP can be seen as promising candidates for all bin packing problems and for allocating 
VMs to PMs in energy efficient manner in cloud computing environment. For low RR, 
NBGA performed 2% lesser comparisons but it used 12% more PMs as compared to its 
counterparts. Our hotspot mitigation algorithm (Miti) is taking 1.42% less PMs than 
MOM algorithm and 23% less PMs than MOM1 algorithm after hotspot mitigation. 
Second algorithm (Miti1) is taking 3.57% less PMs than MOM and 25.71% less PMs 
than MOM1 after hotspot mitigation. In all cases except last case all VMs were placed 
after hotspot mitigation. In our last case when input is 60% (max) and increase in demand 
is 80% (max), then our second algorithm (Miti1) placed 98.75% of VMs as compared to 
97.5% for other algorithm after hotspot mitigation. 

11 Future work 

Proposed heuristics would perform with greater efficiency if it were able to predict live 
incoming workload (demand of various resources). For that we could train our heuristics 
using machine learning techniques like decision tree, neural networks. 
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