A review of scenario generation methods Online publication date: Mon, 13-Dec-2010
by Sovan Mitra, Nico Di Domenica
International Journal of Computing Science and Mathematics (IJCSM), Vol. 3, No. 3, 2010
Abstract: Stochastic programming models provide a powerful paradigm for decision making under uncertainty. In these models the uncertainties are captured by scenario generation and so are crucial to the quality of solutions obtained. Presently there do not exist many literature reviews on scenario generation; this paper surveys them. We introduce the main concepts behind scenario generation, which are not just concerned with discretising methods. We review the main scenario generation classes and analyse the advantages and disadvantages. We also review new and less commonly known scenario generation methods, such as 'hybrid' methods.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com