Perceptual image analysis
by C. Henry, J.F. Peters
International Journal of Bio-Inspired Computation (IJBIC), Vol. 2, No. 3/4, 2010

Abstract: The problem considered in this paper is one of extracting perceptually relevant information from groups of objects based on their descriptions. Object descriptions are qualitatively represented by feature-value vectors containing probe function values computed in a manner similar to feature extraction in pattern classification theory. The work presented here is a generalisation of a solution to extracting perceptual information from images using near sets theory which provides a framework for measuring the perceptual nearness of objects. Further, near set theory is used to define a perception-based approach to image analysis that is inspired by traditional mathematical morphology and an application of this methodology is given by way of segmentation evaluation. The contribution of this article is the introduction of a new method of unsupervised segmentation evaluation that is base on human perception rather than on properties of ideal segmentations as is normally the case.

Online publication date: Fri, 07-May-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com