Laser ablation simulation for copper Online publication date: Wed, 22-Jul-2009
by G. Tani, A. Fortunato, L. Orazi, G. Cuccolini
International Journal of Nanomanufacturing (IJNM), Vol. 3, No. 3, 2009
Abstract: In this paper, a laser milling simulator package is shown and discussed. The software system has been developed to simulate the micro-manufacturing process using solid state lasers with pulse width in the range of 10–100 ns. The system can simulate the effects of the laser beam on the workpiece, keeping into account the surface conditions, the evolution of the workpiece temperature field, the phase changes in the material and the plasma plume effects. Simplifications concerning fluidodynamic and energy dispersions of the plasma plume are proposed. In particular, two empirical tuning parameters are considered: the first one is a global dispersion factor that keeps in account the fraction of energy lost in the environment by the plume; the second one is a spreading factor that permits to model the irradiated energy of the laser beam hitting the workpiece. The direct and coupled effects of these two parameters are evaluated and discussed.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com