Simulation-based evolutionary multi-objective optimisation approach for integrated decision-making in supplier selection Online publication date: Mon, 05-May-2008
by Hongwei Ding, Lyes Benyoucef, Xiaolan Xie
International Journal of Computer Applications in Technology (IJCAT), Vol. 31, No. 3/4, 2008
Abstract: In the design of modern supply chains, integrating supplier selection, order splitting, transportation allocation and inventory control is a challenging issue. Existing optimisation approaches handle the different problems separately and for the sake of solvability, neglect impact of strategic decisions on operational decisions and do not take into account uncertainties. In this paper, a simulation-based evolutionary multi-objective optimisation approach is proposed to deal with this problem. The approach consists of an optimiser and a simulator. The optimiser, based on a multi-objective genetic algorithm, is used to find best-compromised solutions with respect to various criteria, such as the total cost and customer service level. Candidate solutions are evaluated through simulation, which enables realistic evaluation taking into account uncertainties and dynamics along the whole supply chain. A simple case study from the textile industry is presented to illustrate the applicability of the proposed approach for the real-world applications.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com