Deep multi-locality convolutional neural network for DDoS detection in smart home IoT
by Mohammed Almehdhar; Mohammed M. Abdelsamea; Na Ruan
International Journal of Information and Computer Security (IJICS), Vol. 22, No. 3/4, 2023

Abstract: Internet of things (IoT) devices usually offer limited resources such as processing, memory, and network capacity, bringing more security threats to the environment. Distributed denial of service (DDoS) signal attacks are among the most serious threats. Software-defined networking (SDN) is a promising paradigm that could offer a scalable security solution optimised for the IoT ecosystem. However, investigating a robust security solution is still one of the most challenging problems that a smart home environment faces in SDN. In this paper, we introduce a multi-locality deep learning model for the detection of DDoS signals in an SDN-based smart home. It employs convolutional neural networks (CNNs) by learning different levels of local information from the data. In this work, an ensemble of two CNNs to detect malicious traffic flows with low computation overhead framework is proposed. Experimental results demonstrate the robustness, effectiveness, and efficiency of our solution in detecting DDoS attacks in SDN smart home.

Online publication date: Tue, 09-Jan-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Computer Security (IJICS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com