Novel adaptive control for avoiding fuzzy rule explosion in nonlinear systems
by Ashwani Kharola
International Journal of Automation and Control (IJAAC), Vol. 17, No. 4, 2023

Abstract: The study highlights three different control techniques namely proportional integral derivative (PID), adaptive neuro fuzzy inference system (ANFIS) and neural networks (NNs) for the control of highly nonlinear triple inverted pendulum system mounted on a carriage. The objective is to control the complete system within 3.0 sec using above mentioned controllers. The controllers were compared in terms of performance attributes like settling time, steady state error and overshoot responses. The results indicate better performance of ANFIS controller compared to PID and NN controllers. The study also highlights the effect of shape, number and type of membership function on training of ANFIS controller. The study further proposes an ANFIS controller which has been designed using only three membership functions and can successfully solve the problem of rule explosion associated with fuzzy controllers.

Online publication date: Fri, 30-Jun-2023

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Automation and Control (IJAAC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com