Force/position control of constrained reconfigurable manipulators with sliding mode control based on adaptive neural network Online publication date: Wed, 05-Apr-2023
by Ruchika; Naveen Kumar
International Journal of Modelling, Identification and Control (IJMIC), Vol. 42, No. 3, 2023
Abstract: A reconfigurable manipulator can achieve proficient end effector and elongate workspace. However, deformable link causes frequent changes in shape and therefore bring difficulties to model and control the manipulator. In view of distinctive behaviour because of bending operation, a sliding mode based mechanism with no prior dynamic information is introduced for validated control operation. The nonlinear term included in the sliding mode is to improve the convergence rate. Moreover, we show that fast terminal sliders reinforce parametric uncertainty as compared to conventional sliders. The neural network system is adopted for the estimation of nonlinear components whereas the friction term and constraint force of each joint are compensated with the help of adaptive control. The Lyapunov theory proves the stability of a closed-loop system. Finally, simulations are performed in a comparative manner with two different configuration controls that will provide the benefit of the design method.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com