Alligator optimisation algorithm for solving unconstrainted optimisation problems Online publication date: Tue, 04-Apr-2023
by Weng-Hooi Tan; Junita Mohamad-Saleh
International Journal of Bio-Inspired Computation (IJBIC), Vol. 21, No. 1, 2023
Abstract: Inspired by cooperative hunting skills and movement patterns of alligators in nature, this research paper proposes a novel bio-inspired meta-heuristic algorithm, named alligator optimisation (AgtrO) algorithm. Upon mathematical modelling, AgtrO emphasises two main phases: the hunting phase that mimics fishing, purse seining and catching mechanisms, and the relocating phase that mimics travelling and homing instinct mechanisms. The hunting phase discovers any promising global optimal area, towards tracking the true global optimal solution. Meanwhile, the relocating phase avoids local optima (traps) through local exploration and conducts in-depth investigations through local exploitation. The proposed AgtrO was tested on 23 classical optimisation benchmark functions and ten modern CEC-C06-2019 benchmark functions, in comparison with eight recently proposed state-of-the-art algorithms. Upon evaluation, AgtrO has been proved to outperform other algorithms in terms of global-best achievement, while being very competitive in terms of convergence speed.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com