A truncated mean ℓp-LDA approach for intrusion detection system Online publication date: Mon, 15-Nov-2021
by Zyad Elkhadir; Mohammed Benattou
International Journal of Information and Computer Security (IJICS), Vol. 16, No. 3/4, 2021
Abstract: Dealing with cyber threats, especially intrusion identification, is a critical area of research in the field of information assurance. The hackers employ polymorphic mechanisms to masquerade the attack payload and evade the detection techniques. Numerous feature extraction methods have been used to increase the efficacy of intrusion detection systems (IDSs) such as principal component analysis (PCA) and linear discriminant analysis (LDA). Nonetheless, the classical LDA approach that is based on the ℓ2-norm maximisation is very sensitive to outliers. As a solution to this weakness, the researchers proposed many LDA models which rely on ℓ1 and ℓp norms (p < 2). These variants gave satisfactory results in solving many pattern recognition problems. However, these LDA models have an important limitation. The class mean vectors employed are always estimated by the class sample averages. This approximation is not sufficient enough to represent the class mean, particularly in case there are samples that deviate from the rest of data (outliers). In this paper, we suggest to use the truncated mean to estimate the class mean vectors in ℓp-LDA model. Many experiments on KDDcup99 indicate the superiority of the ℓp-LDA over many LDA variants.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Computer Security (IJICS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com