Influence of rake angle and nose radius on optical silicon nanomachining feed rate and surface quality: a modelling, prediction and optimisation study
by Lukman N. Abdulkadir; Khaled Abou-El-Hossein; Muhammad M. Liman
International Journal of Nanomanufacturing (IJNM), Vol. 17, No. 1, 2021

Abstract: Silicon is widely used in infrared (IR) optics due to its high transmissive ability at wavelength (λ) ranging from 1.2 μm to 6.0 μm. However, optical components of high quality require surface roughness (Ra) below or equal to 8 nm. Ultra-high precision single-point diamond turning of optical silicon has filled this gap due to enhanced chip removal, well-defined grain structure and low coefficient of friction of diamond tool. This study aimed at reducing optical silicon Ra value by manipulating both cutting parameters and tool geometry. The recommended Ra value of less than 8 nm was achieved with standard runs 5, 6, 8, 9, and 10 respectively. Also, high surface roughness due to high feed rate was noted to be greatly reduced at high tool negative rake angle and nose radius. Additionally, with increase in tool nose radius at 0° rake angle, poor surface quality resulting from high feed rate reduced.

Online publication date: Fri, 26-Feb-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com