By-pass transition control with a DBD plasma actuator model coupled with a laminar kinetic energy turbulence model
by Zinon Vlahostergios; Pavlos Kaparos; Kyros Yakinthos
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 19, No. 3, 2019

Abstract: The effect of a DBD plasma actuator on the by-pass boundary layer transition control is numerically investigated. A two-equation DBD plasma actuator model is coupled with a three-equation eddy-viscosity turbulence model, which adopts the laminar kinetic energy concept. The investigated test-cases concern zero and variable freestream pressure gradient transitional flows on a flat plate with a sharp leading edge, which belong to the ERCOFTAC experimental database. The experimental data describe the transition characteristics with no plasma actuation and hence, they are used to assess the turbulence model behaviour and as a reference point in order to quantify the coupling effect of the plasma actuator model with the laminar kinetic energy concept. The investigation is focused on the effect of the varying plasma actuator voltage on transitional and turbulent boundary layer characteristics, such as the Reynolds-stresses, the turbulent dissipation and the laminar kinetic energy distributions. The results show that with the DBD actuator activated, the turbulent quantities are suppressed, the transition onset location moves downstream and a boundary layer transition delay is observed.

Online publication date: Tue, 14-May-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email