Smart accelerating and braking achieving higher energy efficiencies in electric vehicles
by Guido Wäger; Jonathan Whale; Thomas Bräunl
International Journal of Electric and Hybrid Vehicles (IJEHV), Vol. 10, No. 4, 2018

Abstract: Efficient operation of EVs is critical to optimise the usage of their relative small energy storage. Although each motor controller has a unique range of motor rotational speeds (rpm) and loads for optimal efficiency, EVs lack variable gearboxes that can match vehicle speed and motor rpm to efficient controller regions. EVs thus rely on the driver to actively influence the load by changing acceleration or deceleration rates for a more efficient operation. Despite this, most EV efficiency studies use speed profiles with small changes in acceleration and deceleration rates. This study investigates the impact of various high load variations in accelerations and decelerations on energy consumption. The results show significant improvements in efficiency and reduced energy consumption by applying high loads at low vehicle speeds and strong deceleration rates. However, the increased losses under certain high acceleration rates outweighed the benefits of loading an EV.

Online publication date: Wed, 27-Feb-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Electric and Hybrid Vehicles (IJEHV):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com