Deciphering published articles on cyberterrorism: a latent Dirichlet allocation algorithm application
by Las Johansen Balios Caluza
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 11, No. 1, 2019

Abstract: An emerging issue called cyberterrorism is a fatal problem causing a disturbance in the cyberspace. To unravel underlying issues about cyberterrorism, it is imperative to look into available documents found in the NATO's repository. Extraction of articles using web-mining technique and performed topic modelling on NLP. Moreover, this study employed latent Dirichlet allocation algorithm, an unsupervised machine learning to generate latent themes from the text corpus. An identified five underlying themes revealed based on the result. Finally, a profound understanding of cyberterrorism as a pragmatic menace of the cyberspace through a worldwide spread of black propaganda, recruitment, computer and network hacking, economic sabotage and others revealed. As a result, countries around the world, including NATO and its allies, had continuously improved its capabilities against cyberterrorism.

Online publication date: Wed, 05-Dec-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email