Finite-time synchronisation of memristive hyperchaotic circuit based on Lorenz system with transmission delay
by Hongjuan Wu; Xiang Hu; Yuming Feng
International Journal of Simulation and Process Modelling (IJSPM), Vol. 13, No. 6, 2018

Abstract: In this paper, we analyse the characteristics of one type of circuit structure that is extended from simplified Lorenz system by taking a memristor as feedback. Considering the transmission time delay between master system and slave system, we used a compound finite-time synchronisation signal controller, which consists of a general feedback control signal and a fine adjustment signal, to ensure the synchronisation of two memristive hyperchaotic circuits based on Lorenz system. Based on Lyapunov stability theory, finite-time control, matrix inequality, and considering the transmission time delay, the finite-time synchronisation condition for this type of memristive hyperchaotic circuit based on Lorenz system with transmission time delay via finite-time controller is given. Finally, simulation results are used to verify the feasibility and effectiveness of this method.

Online publication date: Thu, 18-Oct-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Simulation and Process Modelling (IJSPM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com