Link prediction potentials for biological networks
by Sadegh Sulaimany; Mohammad Khansari; Ali Masoudi-Nejad
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 20, No. 2, 2018

Abstract: Improvement of biological networks reconstructed from high-throughput expression data is an important challenge in systems biology. Link prediction is a problem of interest in many application domains that can be used for this purpose. In this paper after a short review of several biological networks, we present the latest definition of the link prediction problem and review it from several viewpoints. With a comprehensive search in the literature using PubMed, Science Direct and Google Scholar databases, and carefully reviewing the related papers having the 'link prediction' plus at least one of the biological network terms in their title, abstract or keywords, we classify the results based on the graph type and major link prediction outlooks. Finally, we analyse the preformed researches to find new insights about potential uses in addition to understanding the current state, and propose several hints and directions for future works.

Online publication date: Tue, 31-Jul-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email