Natural convection analysis through a radiatively participating media within a rectangular enclosure
by Fadhila Hajji; Akram Mazgar; Khouloud Jarray; Faycal Ben Nejma
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 18, No. 2, 2018

Abstract: A computational approach for the modelling of combined gas radiation and laminar natural convection heat transfer within a rectangular enclosure is presented. One wall among the others is maintained at a constant higher temperature (Th) while the others are of a constant lower temperature (Tc). The discrete-ordinate method (DOM) through S12 directions is applied to resolve the radiative transport equation (RTE) while the 'statistical narrow band correlated-k' (SNBCK) model is adopted to provide gas radiative properties. The effect of radiative contribution, the enclosure tilt angle, the boundary and geometry conditions are presented. Special attention is given to the effect scales of these parameters on the average Nusselt numbers. The results show that radiative effect remarkably contributes to the acceleration of the vortexes, improving heat exchanges at walls.

Online publication date: Tue, 13-Mar-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com