Identification of equivalent mechanical properties for unreinforced masonry walls
by Christophe Mordant; Hervé Degée; Vincent Denoël
International Journal of Masonry Research and Innovation (IJMRI), Vol. 2, No. 4, 2017

Abstract: Transverse vibrations of beams are an interesting topic for numerous engineering fields. The equations of motion develop under various assumptions and associate a frequency equation. This paper expresses the frequency equation for two specific models, using the Timoshenko beam theory. The first model is a typical cantilever beam with an additional mass attached to the free end. The second model considers a beam partially clamped at the base and with an elastic connection of the additional mass to the free end. The relevance of the used theory is discussed and the importance of each term of the equation is studied. These models find applications in unreinforced masonry. They are indeed fitted to identify, from white noise tests, equivalent mechanical properties of unreinforced load-bearing clay masonry walls including soundproofing devices in the perspective of modelling these elements with a macro-scale approach. Discrepancies with respect to current standards are underscored.

Online publication date: Sun, 15-Oct-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Masonry Research and Innovation (IJMRI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email