An energy-aware task consolidation algorithm for cloud computing data centre
by Yonghua Xiong; Ya Chen; Keyuan Jiang; Yongbing Tang
International Journal of High Performance Computing and Networking (IJHPCN), Vol. 10, No. 4/5, 2017

Abstract: Energy efficiency has become an increasingly prominent issue in cloud computing. Task consolidation is an effective way to maximise utilisation of cloud computing resources and reduce energy consumption. Presented in this paper is an improved energy-aware task consolidation algorithm to optimise the scheduling of tasks in cloud computing data centres. Our algorithm was developed based on the linear relationship between energy consumption and the CPU utilisation. Instead of consolidating tasks to a service node until its CPU utilisation reaches 100%, our algorithm uses an optimal point, where the CPU utilisation of a service node reaches 70%, and ensures that every task is preferentially assigned to service nodes that satisfy the 70% CPU utilisation. Our experiments demonstrate that our algorithm can significantly reduce the energy consumption of cloud computing data centres without performance degradation while maintaining good performance compared to the energy-conscious task consolidation (ECTC) approach.

Online publication date: Fri, 18-Aug-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of High Performance Computing and Networking (IJHPCN):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email