A novel bat algorithm fuzzy classifier approach for classification problems
by Shruti Parashar; J. Senthilnath; Xin-She Yang
International Journal of Artificial Intelligence and Soft Computing (IJAISC), Vol. 6, No. 2, 2017

Abstract: In this paper, the application of nature-inspired algorithms (NIA) along with fuzzy classifiers is studied. The four algorithms used for the analysis are genetic algorithm, particle swarm optimisation, artificial bee colony and bat algorithm. These algorithms are used on three standard benchmark datasets and one real-time multi-spectral satellite dataset. The results obtained using different fuzzy-NIAs are analysed. Finally, we observe that the fuzzy classifiers under a given set of parameters perform more accurately when applied with the bat algorithm.

Online publication date: Thu, 15-Jun-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Artificial Intelligence and Soft Computing (IJAISC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com