Convergence evaluation of quaternion-based attitude estimation using MEMS sensors
by Mohammad Samani; Masod Mirzaei Teshnizi
International Journal of Space Science and Engineering (IJSPACESE), Vol. 4, No. 1, 2016

Abstract: In this study, the extended Kalman filter was firstly explicated on the basis of quaternion. In order for the attitude estimation to be improved, multiplicative quaternion-based Kalman filter was presented. This filter helps to increase the convergence, and decrease sensitivity to the primitive conditions. In this research, inertia and reference sensors have been utilised for attitude estimation. Also, modelling and simulation of quaternion-based attitude estimation is initially performed and partially verified. Subsequently, an approximate statistical method was utilised to evaluate filter convergence. According to the simulation result, attitude and bias gyroscope fall in a safe region. Finally, a Mont Carlo simulation was also performed. The comparison and verification of statistical results indicated a small and acceptable deviation between the two approaches, thus, it can be concluded that the simpler approximate statistical approach is also valid for elevation filter convergence and can provide valuable knowledge needed in the filter design.

Online publication date: Wed, 24-Aug-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Space Science and Engineering (IJSPACESE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email