A comparison of mobile robot pose estimation using nonlinear filters: simulation and experimental results
by Zongwen Xue; Howard M. Schwartz
International Journal of Mechatronics and Automation (IJMA), Vol. 5, No. 2/3, 2015

Abstract: This paper explores and compares the nature of the nonlinear filtering techniques on mobile robot pose estimation. Three nonlinear filters are implemented including the extended Kalman filter (EKF), the unscented Kalman filter (UKF) and the particle filter (PF). The criteria of comparison is the magnitude of the error of pose estimation, the computational time, and the robustness of each filter to noise. The filters are applied to two applications including the pose estimation of a two-wheeled robot in an experimental platform and the pose estimation of a three-wheeled robot in a simulated environment. The robots both in the experimental and simulated platform move along a nonlinear trajectory like a circular arc or a spiral. The performance of their pose estimation are compared and analysed in this paper.

Online publication date: Mon, 18-Apr-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mechatronics and Automation (IJMA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com