Experimental investigation on the compressibility of Al/Al2O3 nanocomposites
by Ahmed Wagih; Adel Fathy; Tamer Ali Sebaey
International Journal of Materials and Product Technology (IJMPT), Vol. 52, No. 3/4, 2016

Abstract: The scientific importance of nanocomposites is being increased due to their improved properties. This paper introduces an experimental investigation on the relationship between the reinforcement weight fraction and compressibility of Al/Al2O3 during high energy ball milling. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterise the produced powder. The results showed that the grain size of milled powders was about 43 nm with a noticeable presence of agglomerates at 10 wt.% of Al2O3. By increasing Al2O3 weight fraction to 12% the decrease in grain size was very. With up to 12 wt.% of Al2O3, microhardness increases from 62 to 150 HV due to the decrease of the crystallite size. The compressibility behaviour of the nanocomposite powder was decreased slowly by increasing Al2O3 content due to work hardening on the matrix powder.

Online publication date: Sun, 27-Mar-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com