Analysis of potential GHG emissions reductions from methane recovery in livestock farming
by Michela Gallo; Adriana Del Borghi; Carlo Strazza
International Journal of Global Warming (IJGW), Vol. 8, No. 4, 2015

Abstract: Livestock farming is a significant source of greenhouse gases (GHG) owing to the high amount of methane emissions. The purpose of this paper is to present an analysis of the potential emission reductions and their enhancement during manure management through the optimisation of the main parameters involved, such as temperature, manure characteristics, type of management system. The investigation of a swine manure management system is performed with calculation of GHG emissions reduction due to a methane recovery system coupled with on-site power generator. The analysis conducted on the three parameters considered shows a variation of the methane emissions from 390 (drylot) to 31,000 tCO2e/year (anaerobic lagoon or liquid/slurry). The findings demonstrate that the substitution of anaerobic lagoon systems with a methane recovery system can be considered as a promising process in terms of GHG emissions reduction also in case of not highly favourable conditions of temperature and manure characteristics.

Online publication date: Mon, 16-Nov-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Global Warming (IJGW):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email