Multi-axis MEMS force sensor for measuring friction components involved in dexterous micromanipulation: design and optimisation
by Margot Billot; Xin Xu; Joël Agnus; Emmanuel Piat; Philippe Stempflé
International Journal of Nanomanufacturing (IJNM), Vol. 11, No. 3/4, 2015

Abstract: At the nanoscale and for particular applications such as dexterous micro-manipulation, two degrees of freedom nanotribometers are no longer adequate for studying and characterising the contacts. This paper deals with the specifications and working principle of a new multi-axis friction sensor designed for nanotribological testing applied to this purpose in order to extract each contribution independently (i.e., sliding, rolling and spin motion). It is composed of a central platform with a fixed ball and surrounded by a compliant table. Its sensing ability is based on piezoresistivity: four sets of piezoresistors are symmetrically distributed at the root of four central beams. Finite elements method simulations are performed to find the optimal dimensions of the sensor. As results, this sensor could measure independently normal and friction forces in the range of 1 mN and 100 µN, respectively and the three rotation components. Estimated crosstalk is lower than 1% with a good sensitivity.

Online publication date: Wed, 23-Sep-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email